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In this paper, utilizing the Fibonacci-Mann iteration process, we explore Julia and Mandelbrot sets by establishing the escape
criteria of a transcendental function, sin ðznÞ + az + c, n ≥ 2; here, z is a complex variable, and a and c are complex numbers.
Also, we explore the effect of involved parameters on the deviance of color, appearance, and dynamics of generated fractals. It
is well known that fractal geometry portrays the complexity of numerous complicated shapes in our surroundings. In fact,
fractals can illustrate shapes and surfaces which cannot be described by the traditional Euclidean geometry.

1. Introduction and Preliminaries

Let us consider the well-known Fibonacci sequence f f ðnÞg
defined recursively by

f n + 1ð Þ = f nð Þ + f n − 1ð Þ, n ≥ 1, ð1Þ

with the initial conditions f ð0Þ = f ð1Þ = 1. Recently, a novel
iteration process, Fibonacci-Mann iteration, is introduced as

zn+1 = tnT
f nð Þ znð Þ + 1 − tnð Þzn, ð2Þ

where tn ∈ ½0, 1� and n ∈ℕ (see [1] for more details). It is
worth mentioning here that a fixed point iteration performs
a significant role in the generation of geometrical pictures of
classical Julia and Mandelbrot sets (for instance, see [2–4],
and the references therein). In [2], by establishing the escape
criteria for a complex function

T zð Þ = sin znð Þ + az + c, n ≥ 2ð Þ, ð3Þ

where z is a complex variable and a and c are complex num-
bers; new Julia sets were studied by providing new algo-

rithms for exploring Julia sets utilizing four distinct
iterations (the Picard iteration [5], the Mann iteration [6],
the Ishikawa iteration [7], and the Noor-iteration [8]). Also,
the effects of change in values of parameters on the deviance
of color appearance and dynamics of fractals were investi-
gated in the sequel.

Motivated by these recent studies, our aim in this paper
is to develop escape criteria for a function of the form (3)
using a new algorithm via the Fibonacci-Mann iteration pro-
cess (2) for visualizing the stunning fractals. It is well known
that the escape criterion [9] is indispensable for exploring
the Mandelbrot and Julia sets. We furnish some graphical
illustrations of the generated complex fractals using the
MATLAB software, algorithm, and colormap to demon-
strate the variation in images and explore the effect of the
involved parameters on the deviance of color, appearance,
and dynamics of generated fractals. Also, we observe that
as we zoom in at the edges of the petals of the Mandelbrot
set, we come across the Julia set meaning thereby each point
of the Mandelbrot set includes massive image data of a Julia
set.

A filled Julia set is the set of complex numbers so that the
orbits do not converge to a point at infinity ([10, 11]). For
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the polynomial T : ℂ⟶ℂ of degree ≥2, we denote it by FT
, that is,

FT = z ∈ℂ : T zkð Þj jf g∞k=0is bounded
� �

: ð4Þ

The boundary of JT is the Julia set; that is, JT = ∂FT :
The set of parameters c ∈ℂ so that the filled Julia set JTc

of the polynomial TcðzÞ = z2 + c is connected is known as the
Mandelbrot set ([12, 13]), that is,

M = c ∈ℂ : JTc
is connected

� �
, ð5Þ

or

M = c ∈ℂ : Tc zkð Þj jf g↛∞ as k⟶∞f g: ð6Þ

2. An Escape Criteria via Fibonacci-Mann
Iteration Process

In this section, we establish an escape criterion for the com-
plex transcendental function (3). We take x0 = x, y0 = y, z0
= z, and TðzÞ as Ta,cðzÞ. Suppose that

1 − z2n

3! + z4n

5! −⋯
����

���� ≥ u1j j,

1 − y2n

3! + y4n

5! −⋯
����

���� ≥ u2j j,

1 − x2n

3! + x4n

5! −⋯
����

���� ≥ u3j j,

ð7Þ

where juij ∈ ð0, 1�, 1 ≤ i ≤ 3 except for the values of x, y, and z
so that ju1j = ju2j = ju3j = 0: Then, we have

sin znð Þj j = zn −
z3n

3! + z5n

5! −⋯
����

���� = znj j 1 − z2n

3! + z4n

5! −⋯
����

����,

ð8Þ

and so

sin znð Þj j ≥ znj j u1j j, ð9Þ

z ∈ℂ except for the value of z so that ju1j = 0, ju1j ∈ ð0
, 1�:

Theorem 1. Let Ta,cðzÞ = sin ðznÞ + az + c, n ≥ 2, a, c ∈ℂ,
and the sequence of iterates fzkgk∈ℕ be the Fibonacci-Mann
iteration. Suppose t = inf ftng > 0 and

zj j ≥ cj j > 2 T aj j + 1ð Þ
t u1j j

� �1/ n−1ð Þ
, ð10Þ

where T = sup ftng. Then, we have jzkj⟶∞ as k⟶∞.

Proof. Let z0 = z, Ta,cðzÞ = sin ðznÞ + az + c. Now

zk+1j j = tkT
f kð Þ
a,c zkð Þ + 1 − tkð Þzk

���
���: ð11Þ

For k = 0, since we have jzj ≥ jcj and f ð0Þ = 1, consider-
ing inequality (9), we get

z1j j = t0T
f 0ð Þ
a,c zð Þ + 1 − t0ð Þz

���
��� = t0 sin znð Þ + az + c½ �j

+ 1 − t0ð Þzj ≥ t0 sin znð Þj j − t0 azj j − t0 cj j − 1 − t0ð Þ zj j
= t0 sin znð Þj j − t0 aj j zj j − t0 cj j − 1 − t0ð Þ zj j ≥ t0 u1j j znj j

− t0 aj j zj j − t0 zj j − 1 − t0ð Þ zj j = t0 u1j j znj j − zj j t0 aj jð
+ t0 + 1 − t0ð ÞÞ = t0 u1j j znj j − zj j t0 aj j + 1ð Þ ≥ t u1j j znj j

− zj j T aj j + 1ð Þ ≥ zj j T aj j + 1ð Þ t u1j j zn−1�� ��

T aj j + 1 − 1
 !

:

ð12Þ

Hence, we obtain

z1j j ≥ z1j j
T aj j + 1 ≥ zj j t u1j j zn−1�� ��

T aj j + 1 − 1
 !

: ð13Þ

Let k = 1. Since f ð1Þ = 1, following similar steps and
using the inequality (13), we obtain

z2j j ≥ z1j j t u1j j zn−11
�� ��

T aj j + 1 − 1
 !

≥ zj j t u1j j zn−1�� ��

T aj j + 1 − 1
 !

� t u1j j zn−11
�� ��

T aj j + 1 − 1
 !

≥ zj j t u1j j zn−1�� ��

T aj j + 1 − 1
 !2

,
ð14Þ

and so

z2j j ≥ zj j t u1j j zn−1�� ��

T aj j + 1 − 1
 !2

: ð15Þ

Because, by inequality (13) and the fact that jzj ≥ jcj >
ð2ðTjaj + 1Þ/tju1jÞ1/ðn−1Þ, it is easy to see that jz1j ≥ jzj, and
this implies

z1j j t u1j j zn−11
�� ��

T aj j + 1 − 1
 !

≥ zj j t u1j j zn−1�� ��

T aj j + 1 − 1
 !

: ð16Þ

Again, using the inequality jz1j ≥ jzj ≥ jcj >
ð2ðTjaj + 1Þ/tju1jÞ1/ðn−1Þ and (14), we find jz2j ≥ jz1j.

Let k = 2 and set ω1 = Ta,cðz2Þ. By inequality (10), it is
easy to see that

zn−12
�� �� u1j j ≥ aj j + 2: ð17Þ
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Input:TðzÞ = sin ðznÞ + az + c, where a, c ∈ℂ and n = 2, 3,⋯; A ⊂ℂ − area; K −maximum number of iterations; tn, u1 ∈ ð0, 1� −
Parameters of the generalized Fibonacci-Mann iteration; colormap½0::C − 1� -color map with C colors.
Output: Julia set for area A.
1: forz ∈ Ado
2: R1 = ð2ðTjaj + 1Þ/tju1jÞ1/n−1
3: R =max ðjcj, R1Þ
4: n ≥ 1
5: z = 0
6: whilen ≤ Kdo
7: f ð0Þ = 1
8: f ð1Þ = 1
9: f ðn + 1Þ = f ðnÞ + f ðn − 1Þ
10: zn+1 = tnT

f ðnÞðznÞ + ð1 − tnÞzn
11: ifjzn+1j > Rthen
12: break
13: end if
14: n = n + 1
15: end while
16: i = bðC − 1Þðn/KÞc
17: color z with colormap½i�
18: end for

Algorithm 1:Geometry of Julia set.

Input:TðzÞ = sin ðznÞ + az + c, where a, c ∈ℂ and n = 2, 3,⋯; A ⊂ℂ − area; K −maximum number of iterations; tn, u1 ∈ ð0, 1� −
Parameters of the generalized Fibonacci-Mann iteration; colormap½0::C − 1� -color map with C colors.
Output: Mandelbrot set for area A.
1: forc ∈ Ado
2: R1 = ð2ðTjaj + 1Þ/tju1jÞ1/n−1
3: R =max ðjcj, R1Þ
4: n ≥ 1
5: whilen ≤ Kdo
6: f ð0Þ = 1
7: f ð1Þ = 1
8: f ðn + 1Þ = f ðnÞ + f ðn − 1Þ
9: zn+1 = tnT

f ðnÞðznÞ + ð1 − tnÞzn
10: ifjzn+1j > Rthen
11: break
12: end if
13: n = n + 1
14: end while
15: i = bðC − 1Þðn/KÞc
16: color z with colormap½i�
17: end for

Algorithm 2: Geometry of Mandelbrot set.

Figure 1: Colormap used in the graphical examples.
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Using this last inequality and inequality (9), we get

Table 1: Parameters for generation of Julia set for different values of n:

a c t T t u1 n

(i) 19i −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 2

(ii) 19i −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 4

(iii) 19i −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 5

(iv) 19i −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 6

(v) 19i −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 8

(vi) 19i −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 10

Quadratic

(a) Quadratic

Quartic

(b) Quartic

Quintic

(c) Quintic

Sextic

(d) Sextic

Octic

(e) Octic

Decic

(f) Decic

Figure 2: Effect of n on Julia set.

ω1j j
z2j j =

sin zn2ð Þ + az2 + cj j
z2j j ≥

sin zn2ð Þj j − aj j z2j j − cj j
z2j j ≥

zn2j j u1j j − aj j z2j j − z2j j
z2j j ≥ zn−12

�� �� u1j j − aj j − 1 ≥ 1, ð18Þ
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Table 2: Parameters for generation of quartic Julia set for different values of a.

a c t T t u1 n

(i) 19i −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 4

(ii) -19i −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 4

(iii) -19 −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 4

(iv) 19 −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 4

(a) (b)

(c) (d)

Figure 3: Effect of change in sign in the real and complex parameter a of quartic Julia set.

Table 3: Parameters for generation of quadratic Julia set for different values of a.

a c t T t u1 n

(i) 10 3.14 0.00029901 0.0105 0.0105 0.9 2

(ii) 20 3.14 0.00029901 0.0105 0.0105 0.9 2

(iii) −10 + 50i 3.14 0.00029901 0.0105 0.0105 0.9 2

(iv) 50 − 50i 3.14 0.00029901 0.0105 0.0105 0.9 2
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(a) (b)

(c) (d)

Figure 4: Effect of increase in the absolute value of a on quadratic Julia set.

Table 4: Parameters for generation of cubic Julia set for different values of a and c.

a c t T t u1 n

(i) 40 − 40i −3:25 + 3:50i 0.0019990914 0.0191 0.0191 0.012 3

(ii) 5.7 7.5 0.0019990914 0.0191 0.0191 0.012 3

(iii) 1.8 2.718 0.0019990914 0.0191 0.0191 0.012 3

(a) (b) (c)

Figure 5: Effect of decrease in the absolute value of parameters a and c simultaneously on cubic Julia set.
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Table 5: Parameters for generation of quintic Julia set for different values of t.

a c t T t u1 n

(i) 2.2 0.0035 0.35 0.115025 0.115025 0.92 5

(ii) 2.2 0.0035 0.25 0.115025 0.115025 0.92 5

(iii) 2.2 0.0035 0.20 0.115025 0.115025 0.92 5

(a) (b) (c)

Figure 6: Effect of decrease in parameter t on quintic Julia set.

Quadratic

(a) Quadratic

Cubic

(b) Cubic

Quartic

(c) Quartic

Quintic

(d) Quintic

Septic

(e) Septic

Figure 7: Effect of n on Mandelbrot set.
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Quartic

(a) Quartic

Quintic

(b) Quintic

Sextic

(c) Sextic

Septic

(d) Septic

Octic

(e) Octic

Nonic

(f) Nonic

Figure 8: Effect of change in n on Mandelbrot set.

Table 6: Parameters for generation of Mandelbrot set for different values of n.

a t T t u1 n

(i) -1.87897 0.000026 0.2105 0.2105 0.0932 2

(ii) -1.87897 0.000026 0.2105 0.2105 0.0932 3

(iii) -1.87897 0.000026 0.2105 0.2105 0.0932 4

(iv) -1.87897 0.000026 0.2105 0.2105 0.0932 5

(v) -1.87897 0.000026 0.2105 0.2105 0.0932 7

Table 7: Parameters for generation of Mandelbrot set for different values of n.

a t T t u1 n

(i) -2.2 0.1593911 0.115025 0.115025 0.92 4

(ii) -2.2 0.1593911 0.115025 0.115025 0.92 5

(iii) -2.2 0.1593911 0.115025 0.115025 0.92 6

(iv) -2.2 0.1593911 0.115025 0.115025 0.92 7

(v) -2.2 0.1593911 0.115025 0.115025 0.92 8

(vi) -2.2 0.1593911 0.115025 0.115025 0.92 9
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and this implies

ω1j j ≥ z2j j: ð19Þ

Since f ð2Þ = 2, we have

z3j j = t2T
f 2ð Þ
a,c z2ð Þ + 1 − t2ð Þz2

���
��� = t2 sin ωn

1ð Þ + aω1 + c½ �j
+ 1 − t2ð Þz2j ≥ t2 sin ωn

1ð Þj j − t2 aω1j j − t2 cj j − 1 − t2ð Þ z2j j
= t2 sin ωn

1ð Þj j − t2 aj j ω1j j − t2 cj j − 1 − t2ð Þ z2j j ≥ t2 u1j j ωn
1j j

− t2 aj j ω1j j − t2 ω1j j − 1 − t2ð Þ ω1j j ≥ t2 u1j j ωn
1j j

− ω1j j t2 aj j + 1ð Þ ≥ t u1j j ωn
1j j

− ω1j j T aj j + 1ð Þ ≥ ω1j j T aj j + 1ð Þ t u1j j ωn−1
1

�� ��

T aj j + 1ð Þ − 1
 !

,

ð20Þ

and hence,

z3j j ≥ z3j j
T aj j + 1 ≥ ω1j j t u1j j ωn−1

1
�� ��

T aj j + 1 − 1
 !

: ð21Þ

Similarly, by inequalities (15), (19), and (21), we get

z3j j ≥ zj j t u1j j zn−1�� ��

T aj j + 1 − 1
 !3

: ð22Þ

Repeating this process till kth term, we find

zkj j ≥ zj j t u1j j zn−1�� ��

T aj j + 1 − 1
 !k

: ð23Þ

Then, because of inequality (10), we have

t u1j j zn−1�� ��

T aj j + 1 − 1 > 1, ð24Þ

where ju1j ∈ ð0, 1�. This implies that the orbit of z tends to
infinity; that is, we find jzkj⟶∞ as k⟶∞.

Corollary 2. If we consider jcj > ð2ðTjaj + 1Þ/tju1jÞ1/ðn−1Þ,
then the Fibonacci-Mann orbit escapes to infinity.

Remark 3. The motivation for choosing the Fibonacci-Mann
iteration method in the generation of Julia and Mandelbrot
fractal sets is the fact that for tn ∈ ð0, :5�, both Mann

(a) (b) (c)

Figure 9: Effect of change in sign as well change in real to complex parameter a on quadratic Mandelbrot set.

Table 8: Parameters for generation of quadratic Mandelbrot set for different values of a.

a t T t u1 n

(i) 1.87897 0.000026 0.2105 0.2105 0.0932 2

(ii) -1.87897 0.000026 0.2105 0.2105 0.0932 2

(iii) 1.87897i 0.000026 0.2105 0.2105 0.0932 2

Table 9: Parameters for generation of cubic Mandelbrot set for different values of t.

a t T t u1 n

(i) -2.2 0.059 0.115025 0.115025 0.92 3

(ii) -2.2 0.1593911 0.115025 0.115025 0.92 3

(iii) -2.2 0.91 0.115025 0.115025 0.92 3
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iteration, as well as Fibonacci-Mann iteration, converge to a
fixed point. However, the Fibonacci-Mann iteration con-
verges faster than the Mann iteration. But for tn ∈ ð0:5,1Þ,
Mann iteration needs not converge to a fixed point; however,

the Fibonacci-Mann iteration converges for all the initial
values. By taking f ðnÞ = 1 in inequality (2), we get the Mann
iteration [6]. Also, for f ðnÞ = 1 and tn = 1, we get the Picard
iteration [5]. It neither reduces to Ishikawa-iteration [7], nor

(a) (b) (c)

Figure 10: Effect of change in parameter t on cubic Mandelbrot set.

(a) (b)

(c) (d)

Figure 11: Effect of change in parameters a and t simultaneously on quintic Mandelbrot set.

Table 10: Parameters for generation of quintic Mandelbrot set for different values of a and t.

a t T t u1 n

(i) -2i 0.13 0.9025 0.9025 0.92 5

(ii) -0.5 0.1593911 0.9025 0.9025 0.92 5

(iii) 0 0.91 0.9025 0.9025 0.92 5

(iv) -2.2i 0.031 0.9025 0.9025 0.92 5

10 Journal of Function Spaces



to Noor-iteration [8] since Ishikawa-iteration is a two-step
process and Noor-iteration is a three-step process. On the
other hand, Antal et al. [2] used the Picard iteration, the
Mann iteration, the Ishikawa iteration, and the Noor-
iteration to explore and compare the fractals as Julia sets.
It is well known that Banach [14] utilized Picard iteration
[5] to approximate a fixed point for underlying contraction
mapping. But when we use slightly weaker mapping, then
Picard iteration needs not converge. Consequently, Mann
iteration [6], Ishikawa iteration [7], Krasnosel’ski iteration
[15], modified Mann iteration [16], and so on have been
introduced by distinct researchers to solve this issue for dif-
ferent contractions.

Remark 4. In Theorem 1, we proved the conclusion by sym-
metry by starting with taking k = 0, then k = 1, k = 2, and
repeating the process till the kth term. The parameters
selected have not been studied in this point of view till
now and are new. We refer the interested reader to [17,
18] for a detailed information about the Fibonacci sequence.
It is well-known that the golden ratio and the Fibonacci
sequence have numerous applications which range from
the description of plant growth, the crystallographic struc-
ture of certain solids to music, and the development of com-
puter algorithms for searching data bases. This fascinating
sequence of numbers is named after the Italian mathemati-
cian Leonardo of Pisa, later known as Fibonacci, who intro-
duced the sequence to Western European mathematics in
his 1202 book Liber Abaci. It is interesting to recall that
the Fibonacci sequence is initially explored by an ancient
Indian mathematician and poet Acharya Pingala (450BC-
200BC), the author of the Chandaśāstra (the earliest known
treatise on Sanskrit prosody).

3. Generation of Julia and Mandelbrot Sets

We use MATLAB 8.5.0 (R2015a) for developing fractals for
transcendental complex sine function (3) via the Fibonacci-
Mann iteration (2) process. We develop Algorithms 1 and 2
to explore the geometry of Julia and Mandelbrot sets, respec-
tively. It is interesting to notice that the structure of the frac-
tals is very much dependent on the selection of iterative
processes. During the simulation process, we have obtained
and analyzed many fractals but included a limited number
of fractals to discuss the behavior for the different parameter
values associated with it. The parameters a, c, n, u1, t, t, and
T perform a very significant role in giving vibrant colors
and exploring the characteristics of the associated Julia sets
and Mandelbrot sets. Throughout the paper, we use the
standard “jet” colormap (as shown in Figure 1).

3.1. Julia Set. As we change the value of n (see Table 1),
keeping other parameters fixed, we get amazing fractals,
which are visible in Figures 2(a)–2(f). As the value of n
increases, the fractal takes a circular shape. For n = 10, we
obtain a Julia set that is similar to a circular saw or colorful
teething ring (Figure 2(f)).

The parameter a gives rotational symmetry when it is
purely real (imaginary) and changes the sign. For the same
set of parameters and only changing the sign of real and
complex parameter a as in Table 2, the resultant fractals
can be seen in Figures 3(a)–3(d).

The parameter a also adds beauty to the fractals. As the
absolute value of a increases keeping other parameters the
same (as in Table 3), the more aesthetic fractals can be seen
(Figures 4(a)–4(d)).

The impact of change in the values of parameters a and c
simultaneously (see Table 4) on the cubic Julia set can be

(a) (b)

Figure 12: Effect of change in parameters T, t, and u1 simultaneously on cubic Mandelbrot set.

Table 11: Parameters for generation of cubic Mandelbrot set for different values of T, t, and u1.

a t T t u1 n

(i) -5 0.0525 0.2 0.01 0.05 3

(ii) -5 0.0525 0.3 0.05 0.005 3
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seen in Figures 5(a)–5(c). Noticeably, cubic Julia set in
Figure 5(a) is symmetrical about both the axes; however, in
Figures 5(b) and 5(c), it is symmetrical only about x-axis.
Changes in the values of a and c from complex to real as well
as a decrease in absolute value add beauty to resulting
fractals.

The parameter t is responsible for the volume of the frac-
tal (see Table 5). Even a slight decrease in t from 0.35 to 0.20
expands the quintic Julia set which are symmetrical about x
-axis as shown in Figures 6(a)–6(c).

3.2. Mandelbrot Set. Like Julia set, Mandelbrot also becomes
rounded (see Figures 7 and 8) as n increases (Tables 6 and 7).
Noticeably, the number of branches in Figures 7(a)–7(e) is 2n
while the number of branches in Figures 8(a)–8(f) is (n − 1)
(unlike Figure 7).

Figure 9 demonstrates the effect of change in sign as well
change in real to the complex value of parameter a on qua-
dratic Mandelbrot set (see Table 8).

Lower values (Table 9) of t give more beautiful, artistic,
and larger fractals which are symmetrical about x-axis
(Figures 10(a)–10(c)).

Figure 11 demonstrates the effect of change in parame-
ters a and t simultaneously on the quintic Mandelbrot set
(see Table 10).

Figure 12 demonstrates the effect of change in parame-
ters T, t, and u1 simultaneously on the cubic Mandelbrot
set (see Table 11). Figures 12(a) and 12(b) appear like a pair
of duck which are mirror images of each other.

Remark 5.

(i) During the generation of fractals, it is surprising to
see that, for the same parameter set values, the effect
of even minor changes in one parameter causes a
major impact on the appearance of the resultant
fractal. Consequently, it is significant to select
appropriate parameters to obtain the desired fractal
pattern.

(ii) The majority of Julia and Mandelbrot sets generated
by the sine function are symmetrical about the x
-axis except Figures 2(a)–2(c) and Figures 3(a) and
3(b).

(iii) The change in the sign of the value of parameters a
leads to reflexive and rotational symmetry.

(iv) The Julia and Mandelbrot fractals explored in this
work are aesthetic, novel, and pleasing because the
complex sine function TðzÞ = sin ðznÞ + az + c con-
tains a lot of attributes in it. The motivation behind
this is the fact that on altering the iteration process,
the dynamics and behavior of the fractals are also
altered, which are significant from the graphical as
well as applications viewpoint.

(v) We have displayed just the zoomed kind of fractals
since the transcendental function sin ðzÞ is
unbounded so that the fractals which occupy the
infinite area may lie in. But due to the unbounded-

ness of sin ðzÞ only on a real and imaginary axis, it
can be observable.

(vi) Almost all the fractals occupy the area from ½−
0:1,0:1� × ½−0:1,0:1� to ½−10, 10� × ½−10, 10�.

4. Conclusion

We have generated Mandelbrot and Julia sets of various tran-
scendental complex sine functions to demonstrate the signif-
icance of the newly developed Fibonacci-Mann iteration
process. We have analyzed the behavior of variants of the
Julia and Mandelbrot sets for different parameter values after
obtaining fascinating nonclassical variants of classical Man-
delbrot and Julia fractals using the MATLAB software. We
have noticed that the role of each parameter is distinct.
Therefore, we have restricted our discussion to a limited type
of combination of parameters. However, we have tried to
cover the maximum possible combination of parameters
involved in developing the algorithm (escape criterion) in
the Corollary 2. Also, we have observed that as we zoom in
on the edges of the petals of the Mandelbrot set, we come
across the Julia set meaning thereby each point of the Man-
delbrot set includes massive image data of a Julia set. Also,
the size of fractals relies on the value of parameter n. As the
value of n parameter increases, the area captured by the frac-
tals decreases, and its shape becomes circular. On the other
hand, the shape as well as the symmetry of each fractal relies
on the values of parameters a and c. We have explored a new
technique via Fibonacci-Mann iteration for visualizing the
filled-in Julia and Mandelbrot sets.

Data Availability

Data sharing is not applicable to this article as no datasets
were generated or analyzed during the current study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. R. Alfuraidan and M. A. Khamsi, “Fibonacci–Mann itera-
tion for monotone asymptotically nonexpansive mappings,”
Bulletin of the Australian Mathematical Society, vol. 96,
no. 2, pp. 307–316, 2017.

[2] S. Antal, A. Tomar, D. J. Prajapati, and M. Sajid, “Fractals as
Julia sets of complex sine function via fixed point iterations,”
Fractal and Fractional, vol. 5, no. 4, p. 272, 2021.

[3] S. Antal, A. Tomar, D. J. Prajapati, and M. Sajid, “Variants of
Julia and Mandelbrot sets as fractals via Jungck-Ishikawa fixed
point iteration system with s-convexity,” AIMS Mathematics,
vol. 7, no. 6, pp. 10939–10957, 2022.

[4] A. Tomar, D. J. Prajapati, S. Antal, and S. Rawat, “Variants of
Mandelbrot and Julia fractals for higher-order complex poly-
nomials,” Mathematical Methods in the Applied Sciences, pp.
1–13, 2022.

[5] E. Picard, “Memoire sur la theorie des equations aux derivees
partielles et la methode des approximations successives,”

12 Journal of Function Spaces



Journal de Mathématiques Pures et Appliquées, vol. 6, pp. 145–
210, 1890.

[6] W. R. Mann, “Mean value methods in iteration,” Proceedings
of the American Mathematical Society, vol. 4, no. 3, pp. 506–
510, 1953.

[7] S. Ishikawa, “Fixed points by a new iteration method,” Pro-
ceedings of the American Mathematical Society, vol. 44, no. 1,
pp. 147–150, 1974.

[8] M. A. Noor, “New approximation schemes for general varia-
tional inequalities,” Journal of Mathematical Analysis and
Applications, vol. 251, no. 1, pp. 217–229, 2000.

[9] J. Barrallo and D. M. Jones, “Coloring Algorithms for Dynam-
ical Systems in the Complex Plane,” in Visual Mathematics,
Mathematical Institute SASA, Belgrade, Serbia, 1999.

[10] M. Barnsley, Fractals Everywhere, Academic Press, San Diego,
CA, USA, 2nd edition, 1993.

[11] G. Julia, “Mémoire sur l’itération des fonctions rationnelles,”
Journal de Mathématiques Pures et Appliquées, vol. 8, pp. 47–
745, 1918.

[12] R. L. Devaney, A First Course in Chaotic Dynamical Systems:
Theory and Experiment, Addison-Wesley, Boston, MA, USA,
2nd edition, 1992.

[13] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Free-
man, New York, NY, USA, 1982.

[14] S. Banach, “Sur les opérations dans les ensembles abstraits et
leur application aux équations intégrales,” Fundamenta Math-
ematicae, vol. 3, pp. 133–181, 1922.

[15] M. A. Krasnosel’ski, “Some problems of nonlinear analysis,”
American Mathematical Society Translations: Series 2,
vol. 10, no. 2, pp. 345–409, 1958.

[16] J. Schu, “Iterative construction of fixed points of asymptoti-
cally nonexpansive mappings,” Journal of Mathematical Anal-
ysis and Applications, vol. 158, no. 2, pp. 407–413, 1991.

[17] R. A. Dunlap, The Golden Ratio and Fibonacci Numbers,
World Scientific, 1997.

[18] T. Koshy, ““Fibonacci and Lucas numbers with applications”,
Vol. 1. Second edition of MR1855020,” in Pure and Applied
Mathematics (Hoboken), John Wiley & Sons, Inc., Hoboken,
NJ, 2018.

13Journal of Function Spaces


	Julia and Mandelbrot Sets of Transcendental Function via Fibonacci-Mann Iteration
	1. Introduction and Preliminaries
	2. An Escape Criteria via Fibonacci-Mann Iteration Process
	3. Generation of Julia and Mandelbrot Sets
	3.1. Julia Set
	3.2. Mandelbrot Set

	4. Conclusion
	Data Availability
	Conflicts of Interest

