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Abstract: In this paper, we first define a Kenmotsu-like statistical manifold (K.l.s.m) with examples.
Then, we switch to Kenmotsu-like statistical submersions (K.l.s.s), where we investigate the fact
that, for such submersions, each fiber is a statistical manifold that is similar to K.l.s.m, and the base
manifold is similar to the Kähler-like statistical manifold. Subsequently, assuming the postulate that
the curvature tensor with regard to the affine connections of the total space obeys certain criteria, we
analyze such statistical submersions to those developed by Kenmotsu. Lastly, we talk about statistical
submersions (SS) with conformal fibers (CFs) that are K.l.s.m.

Keywords: statistical manifolds; Kenmotsu-like statistical manifolds; statistical submersions;
Kenmotsu-like statistical submersions

1. Introduction

A Reimannian manifold is a statistical manifold of probability distributions possessing
a Riemannian metric and two dual (conjugate) affine connections without torsion [1]. A
statistical framework of a Riemannian metric and its extension are a Riemannian connection.
The theory of statistical submanifolds and statistical manifolds is a recent geometry that
plays a crucial role in several fields of mathematics. Various results have been derived by
distinguished geometers in this area.

K. Kenmotsu [2] found interesting results and studied the warped product spaces of
the type R× f B, where B is a Kaehlerian manifold with a maximal dimension that falls
under Tanno’s categorization of connected nearly contact metric manifolds (called the third
class). Then, the author examined the characteristics of R× f B and described it using tensor
relations. A manifold of this type is referred to as a Kenmotsu manifold. A new notion
in the statistical manifold, the Kenmotsu statistical manifold, was initiated by Furuhata
et al. in [3]. Locally, it is the warped product of a holomorphic statistical manifold and a
line. By establishing a natural affine connection to a Kenmotsu manifold, they developed a
Kenmotsu statistical manifold in the same publication. Recently, Murathan et al. [4] talked
about the term β-K.l.s.m.

On the other hand, the concept of submersion in differential geometry was first reported
by O’Neill [5] and Gray [6], and Watson [7] later brought the concept of almost Hermitian
submersions by using Riemannian submersions (RS) from almost Hermitian manifolds.

Afterwards, there have been several subclasses of almost Hermitian manifolds between
which almost Hermitian submersions have been found. Additionally, under the heading
of contact RS, S. ahin in [8] extended RS to a wide variety of subclasses of virtually contact
metric manifolds. In [9] the majority of studies on Riemannian, almost Hermitian, or
contact RS are contained.

Barndroof-Nielsen and Jupp [10] discussed RS from the viewpoint of statistics. Abe
and Hasegawa introduced and studied the SS between statistical manifolds in [11]. The

Symmetry 2022, 14, 1681. https://doi.org/10.3390/sym14081681 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14081681
https://doi.org/10.3390/sym14081681
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-1713-6831
https://orcid.org/0000-0003-3895-7548
https://orcid.org/0000-0002-2116-7382
https://orcid.org/0000-0003-4420-9861
https://doi.org/10.3390/sym14081681
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14081681?type=check_update&version=3


Symmetry 2022, 14, 1681 2 of 13

SS of the space of the multivariate normal distribution, statistical manifolds with virtually
contact structures, and statistical manifolds with almost complex structures were among
the topics that K. Takano found intriguing to research (see [12–14]). Remarkable statistical
submersions have recently been studied, including para-Kähler-like statistical submer-
sions [15], cosymplectic-like statistical submersions [16], and quaternionic Kähler-like
statistical submersions [17]. Most of the research related to the various submersion can be
found in [18–24].

Inspired by the affirmative works, we consider K.l.s.m with some examples. Then,
we study Kenmotsu-like statistical submersions (K.l.s.s) and give many results for such
submersions with new examples. This study contributes to developing the SS literature.

2. Kenmotsu-like Statistical Manifolds (K.l.s.m)

Let M̄ be a semi-Riemannian manifold and nondegenerate metric ḡ, and a torsion-free
affine connection by ∇̄. Triplet (M̄, ∇̄, ḡ) is a statistical manifold with symmetric ∇̄ḡ [12].
For a statistical manifold (M̄, ∇̄, ḡ), we describe a second connection ∇̄∗ as

Wḡ(U, V) = ḡ(∇̄WU, V) + ḡ(U, ∇̄∗WV), (1)

for any U, V, W ∈ TrM̄, r ∈ M̄. Here, affine connection ∇̄∗ is referred to as a conjugate
(or dual) of the connection ∇̄ with respect to ḡ. Affine connection ∇̄∗ is torsion-free with
symmetric ∇̄∗ ḡ and obeys

(∇̄∗)∗ = ∇̄, 2∇̄0 = ∇̄+ ∇̄∗,

where in the Levi-Civita connection ∇̄0 on M̄.
A statistical manifold is (M̄, ∇̄∗, ḡ). For example, let (M̄, ∇̄, ḡ) be a semi-Riemannian

manifold along its Riemannian connection ∇̄ is a trivial statistical manifold. In this case, R̄
(R̄∗) stands for the curvature tensor on M̄ with respect to affine connection ∇̄ (its conjugate
∇̄∗). Now, we produce

ḡ(R̄(U, V)W, W
′
) = −ḡ(W, R̄∗(U, V)W

′
), (2)

for any U, V, W, W
′ ∈ TrM̄ [12].

Let (M̄, ḡ) be a (2n + 1)-dimensional semi-Riemannian manifold that admits the
almost contact structure (ϕ, ξ, ν) that contains another tensor field, ϕ∗, of type (1, 1)
that fulfils

ḡ(ϕU, V) = −ḡ(U, ϕ∗V), (3)

for any U, V ∈ TrM̄. Then, M̄ is a metric manifold with almost contact structure (ϕ, ξ, ν, g)
of a specific sort [14]. Then,

ϕ∗2U = −U + ν(U)ξ and ḡ(ϕU, ϕ∗V) = ḡ(U, V)− ν(U)ν(V). (4)

In fact, ϕ is a nonsymmetric tensor field, which shows that ϕ + ϕ∗ 6= 0 everywhere.
The almost contact manifold also entertain the following equations:

ν(ξ) = 1, ϕ(ξ) = 0 and ν ◦ ϕ = 0. (5)

We also obtained the almost contact metric manifold of a specific sort [14], such that

ϕ∗ξ = 0 and ν(ϕ∗(E)) = 0. (6)

Murathan et al. [4] produced a method of how to construct K.l.s.m relying on the idea
of a statistical manifold similar to that of the Kähler-like statistical manifold. They defined
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β-K.l.s.m and said that an almost contact metric such as statistical manifold (M̄, ∇̄, ϕ, ξ, ν, ḡ)
is referred to as a β-Kenmotsu-like statistical manifold if

(∇̄U ϕ)V = β{ḡ(U, ϕV)ξ + ν(V)ϕU}, (7)

∇̄Uξ = βϕ2U, (8)

where β is differentiable function on M̄. They proved the following theorem [4]:

Theorem 1. Let (B, gB,∇B, J) be a Kähler-like statistical manifold, and (R,∇R, dt) be trivial
statistical manifold. R× B. Under Proposition 2.2 (see [4]), R× f B is a β = f ′

f K.l.s.m.

Now, (M̄, ∇̄, ϕ, ξ, ν, ḡ) is called a K.l.s.m if the following conditions hold:

∇̄Uξ = U − ν(U)ξ, ∇̄∗Uξ = U − ν(U)ξ, (9)

(∇̄U ϕ)V = ḡ(ϕU, V)ξ − ν(W)ϕU and (∇̄∗U ϕ∗)V = ḡ(ϕ∗U, V)ξ − ν(W)ϕ∗U. (10)

Consequently, we have the following lemma:

Lemma 1. (M̄, ∇̄, ϕ, ξ, ν, ḡ) is a K.l.s.m if and only if (M̄, ∇̄∗, ϕ∗, ξ, ν, ḡ) is a K.l.s.m.

In [25], certain bounds for statistical curvatures of submanifolds with any codimension
of K.l.s.m were obtained. Now, we give the following examples on β-K.l.s.m:

Example 1. Let us assume a Kähler-like statistical manifold (B2,∇B, gB, J), where B2 = {(x1, x2)
∈ R2}

J =

(
0 1
−1 0

)
,

J∗ =

(
0 −1

2
2 0

)
,

gB =

(
2 0
0 −1

)
and the flat affine connection ∇B. Also, (R,∇R, dt2) is a trivial statistical manifold with constant
curvature 0. From Theorem 1, warped product manifold (M̄ = R× f B2, ∇̄, ḡ = dt2 + f 2gB) is a
β-K.l.s.m.

Example 2. A Euclidean space R4 with local coordinate system {x1, x2, y1, y2} that admits the
following almost complex structure J:

J =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

,

the metric gR4 = 2dx2
1 + 2dx2

2 − dy2
1 − dy2

2 with a flat affine connection ∇R4
is referred as a

Kähler-like statistical manifold (see [14]). If
(
R,∇R, dt2) is a trivial statistical manifold. In view

of [4], the product manifold
(
R× f R4, ∇̄, ḡ = dt2 + f 2gR4

)
is called a β− K.l.s.m.



Symmetry 2022, 14, 1681 4 of 13

Let us define ϕ, ξ and η by

ϕ =


0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 −1 0 0 0
0 0 −1 0 0

, ξ = dt =


1
0
0
0
0


and η = (1, 0,−y1, 0,−y2). We also find

ϕ∗ =


0 0 0 0 0
0 0 0 − 1

2 0
0 0 0 0 − 1

2
0 2 0 0 0
0 0 2 0 0

.

Example 3. From [26], we know that M̄n+1
v = {(x1, . . . , xn, xn+1)|xn+1 > 0} the half upper

space with
(

ḡ, ∇̄(1), J̄(1)
)

that was described as in [26],
(

M̄, ḡ, ∇̄(1), J̄(1)
)

is a Kähler-like statis-

tical manifold. So, If
(
R,∇R, dt2) is a trivial statistical manifold, It is recognised by [4] that the

product manifold
(
R× f M̄,∇, g = dt2 + f 2 ḡ

)
is a β− K.l.s.m.

We examine curvature tensor R̄ on a statistical manifold similar to that of K.l.s.m with
respect to ∇̄, such that

R̄(U, V)W =
c− 3

4
{ḡ(V, W)U − ḡ(U, W)V}

+
c + 1

4
{ḡ(ϕV, W)ϕU − ḡ(ϕU, W)ϕV

−2ḡ(ϕU, V)ϕW − ḡ(V, ξ)ḡ(W, ξ)U

+ḡ(U, ξ)ḡ(W, ξ)V + ḡ(V, ξ)ḡ(W, U)ξ

−ḡ(U, ξ)ḡ(W, V)ξ}, (11)

where c ∈ R. Afterwards, shifting ϕ to ϕ∗ in (11), we produce the expression for the
curvature tensor R̄∗ in terms of ∇̄∗.

Let
(
M̄, ∇̄, ḡ

)
be a statistical manifold and M be a submanifold of M̄. Then

(
M,∇, g

)
is also a statistical manifold with the induced statistical structure (∇, g) on M from (∇̄, ḡ)
and we call

(
M,∇, g

)
as a statistical submanifold in

(
M̄, ∇̄, ḡ

)
.

In the statistical setting, Gauss and Weingarten equations are respectively specified
by [27]

∇̄UV = ∇UV + h(U, V), ∇̄∗UV = ∇∗UV + h∗(U, V),

∇̄Uη = −Aη(U) +∇⊥Uη, ∇̄∗Uη = −A∗η(U) +∇⊥∗U η,

}
(12)

for any U, V ∈ TrM and η ∈ T⊥r M, where ∇̄ and ∇̄∗ are the dual connections on M̄.
Similarly, on M, we denote them with∇ and∇∗. For ∇̄ and ∇̄∗, the symmetric and bilinear
imbedding curvature tensor of M in M̄ are indicated by h and h∗, respectively. The finest
relation between h (h∗) and A (A∗) is [27]:

ḡ(h(U, V), η) = g(A∗ηU, V) and ḡ(h∗(U, V), η) = g(AηU, V). (13)
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We indicate the curvature tensor fields of ∇̄ and∇ as R̄ andR, respectively. Then, for
any U, V, W, W

′ ∈ TrM, the corresponding Gaussian equations are [27]

ḡ(R̄(U, V)W, W
′
) = g(R(U, V)W, W

′
) + ḡ(h(U, W), h∗(V, W

′
))

−ḡ(h∗(U, W
′
), h(V, W)) (14)

and

ḡ(R̄∗(U, V)W, W
′
) = g(R∗(U, V)W, W

′
) + ḡ(h∗(U, W), h(V, W

′
))

−ḡ(h∗(U, W
′
), h(V, W)). (15)

Thus, the statistical curvature tensor fields of M̄ and M are, respectively, specified by

S̄ =
1
2
(R̄+ R̄∗) and S =

1
2
(R+R∗).

For U ∈ TrM, we put

ϕU = tan(ϕU) + nor(ϕU)

= PU + FU,

where PU (P∗U) and FU (F∗U) indicate the tangential and normal components of ϕU
(ϕ∗U), respectively. Likewise, we can write

ϕ∗U = tan(ϕ∗U) + nor(ϕ∗U)

= P∗U + F∗U.

3. Background of Statistical Submersions

This segment provides the prior knowledge required for SS.
Let us consider two semi-Riemannian manifolds, M̄ andN , and let a semi-Riemannian

submersion ω : M̄ −→ N such that ω∗ maintains the lengths of horizontal vectors, and
all the fibers are semi-Riemannian submanifolds of M̄ (for more details, see [9,21]). Abe
and Hasegawa [11] investigated affine submersions with horizontal distribution from a
statistical manifold. Furthermore, SS was discussed by Takano in [12,13].

Let a semi-Riemannian submersion ω : (M̄, ḡ) −→ (N , ĝ) between the semi-Riemannian
manifolds (M̄, ḡ) and (N , ĝ). The semi-Riemannian submanifold ω−1(x) has n− 2 dimen-
sions and an induced metric g′ known as a fiber and denoted by M

′
for any point x ∈ N .

The vertical and horizontal distributions in the tangent bundle TM̄ of M̄ are indicated by
V(M̄) andH(M̄), respectively. Thus, we have

T(M̄) = V(M̄)⊕H(M̄).

If there is a vector field X on M̄, we refer to it as projectable. Vector field X̂ on N ,
such that ω∗(Xr) = X̂ω(r), for each r ∈ M̄. In this instance, X and X̂ are referred to as
ω-related. A vector field X onH(M̄) if it is projectable, it is referred to as basic [5]. We have
the following information if X and Y are the fundamental vector fields, ω-related to X̂, Ŷ:

1. ĝ(X̂, Ŷ) ◦ω = ḡ(X, Y),
2. H[X, Y] is a fundamental vector field isH[X, Y], and ω ∗ H[X, Y] = [X̂, Ŷ] ◦ω. vector

field and ω∗H[X, Y] = [X̂, Ŷ] ◦ω,
3. For any vertical vector field U, [X, U] is vertical.

O’Neill’s law describes the geometry of semi-Riemannian submersions. Tensors T and
A are defined as follows using [5]:

TEF = H∇̄VEVF + V∇̄VEHF, (16)
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AEF = H∇̄HEVF + V∇̄HEHF (17)

with respect to any vector fields E and F on M̄. It is clear that skew-symmetric operators
TE and AE on the tangent bundle of M̄ reverse the vertical and horizontal distributions.
We provide a summary of the characteristics of tensor fields T and A. If E, F are vertical
vector fields on M̄, and X, Y are horizontal vector fields, we possess

TEF = TFE, (18)

AXY =
1
2
V [X, Y] = −AYX. (19)

Let ω : M̄ −→ N be a semi-Riemannian submersion from a statistical manifold
(M̄, ∇̄, ḡ). Let us use symbols ∇′ and ∇′∗ to represent the affine connections on M

′
. It is

obvious that
∇′EF = V∇̄EF and ∇′∗E F = V∇̄∗EF

for vertical vector fields E and F on M̄. It is simple to observe that∇′ and∇′∗ are conjugate
to each other and torsion-free with respect to g

′
.

Let submersion ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) between two statistical manifolds be a
statistical submersion if ω obeys ω∗(∇̄XY)r = (∇̂X̂Ŷ)ω(r) for basic vector field X, Y and
r ∈ M̄. Shifting ∇ for ∇∗ in the aforementioned expressions, we derive T∗ and A∗ [12]. A
and A∗ vanish if and only ifH(M̄) is integrable with respect to∇ and∇∗, respectively. For
E, F ∈ V(M̄) and X, Y ∈ H(M̄) , we produce

ḡ(TEF, X) = −ḡ(F, T∗EX) and ḡ(AXY, E) = −ḡ(Y, A∗XE). (20)

4. Properties of Statistical Submersions

In this section, we discuss some useful properties of statistical submersion proposed by
Takano [12]. First, we have the following lemmas for this study. Therefore, for a statistical
submersion ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ), we have [5,12]

Lemma 2 ([12]). If X and Y are horizontal vector fields, then AXY = −A∗YX.

Lemma 3 ([12]). For X, Y ∈ H(M̄) and E, F ∈ V(M̄). Then we have

∇̄EF = TEF +∇′EF, ∇̄∗EF = T∗EF +∇′∗E F, (21)

∇̄EX = TEX +H∇̄EX, ∇̄∗EX = T∗EX +H∇̄∗EX, (22)

∇̄XE = AXE + V∇̄XE, ∇̄∗XE = A∗XE + V∇̄∗XE, (23)

∇̄XY = H∇̄XY + AXY, ∇̄∗XY = H∇̄∗XY + A∗XY. (24)

Furthermore, if X is basic, thenH∇̄EX = AXE andH∇̄∗EX = A∗XE.

Moreover, let R̂(X, Y)Z (resp. R̂∗(X, Y)Z) is a horizontal vector field like that

ω∗(R̂(X, Y)Z) = R̂(ω∗X, ω∗Y)ω∗Z

at each point r ∈ M̄, where R̂ (resp. R̂∗) be the curvature tensor with respect to the induced
affine connection ∇̂(resp. ∇̂∗). Thus we have the following theorem [12].

Theorem 2 ([12,14]). If ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) is a statistical submersion then for
E, F, G, H ∈ V(M̄) and X, Y, Z, W ∈ H(M̄)

ḡ(R(E, F)G, H) = ḡ(R(E, F)G, H) + ḡ(TEG, T∗F H)− ḡ(TFG, T∗EH), (25)

ḡ(R(X, Y)Z, W) = ḡ(R̂(X, Y)Z, W) + ḡ((AX + A∗X)Y, A∗ZW) (26)
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− ḡ(AYZ, A∗XW) + ḡ(AXZ, A∗YW).

ḡ(R(X, E)F, Y) = ḡ((∇̄XT)EF, Y)− ḡ((∇̄EA)X , F) (27)

+ ḡ(AXE, A∗Y F)− ḡ(TEX, T∗FY),

ḡ(R(X, E)Y, F) = ḡ(∇̄XT)EY, F)− ḡ((∇̄EA)XY, F) (28)

− ḡ(AXE, AY F)− ḡ(TEX, TFY).

Now, we describe with {K1, K2, . . . , Km}, {X1, . . . , Xn} and {E1, E2 . . . , Et} the or-
thonormal frame of T(M̄),H(M̄) and V(M̄), respectively, such that Ki = Xi, 1 ≤ i ≤ n and
Kn+t = Et, 1 ≤ t ≤ s. With εa

b and ε∗ba , we jointly define the connection forms in terms of
local coordinates {K1, . . . , Km} with respect to the affine connection ∇̄ and its conjugate
∇̄∗. Adopting (1), we produce

ε∗ba = −εa
b, 1 ≤ a, b ≤ m (29)

and

ḡ(TX, TY) =
s

∑
t=1

ḡ(TEt X, TEt Y), (30)

for any X, Y ∈ H(M̄). The horizontal vector fields accordingly determine the fiber’s
mean curvature vector field with regard to the affine connection ∇̄ and its conjugate
connection ∇̄∗,

N =
s

∑
t=1

TEt Et and N∗ =
s

∑
t=1

T∗Et
Et.

5. Kenmotsu-like Statistical Submersion (K.l.s.s)

Assume that (M̄, ϕ, ξ, ν, ḡ) is an almost contact metric manifold. If ω : M̄ −→ N is a
semi-Riemannian submersion, each fiber is a ϕ-invariant semi-Riemannian submersion of
M̄ and vector field ξ is tangent to M̄; therefore, ω is an almost contact metric submersion. If U
is basic on M̄, which is ω-related to Û on N , then ϕU (resp. ϕ∗U) is basic and ϕ-related to
ϕÛ (resp. ϕ∗Û) [14].

Analogous to the Sasaki-like statistical submersion [14], we describe K.l.s.s as follows:

Definition 1. A SS ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) is K.l.s.s if (M̄, ∇̄, ϕ, ξ, ν, ḡ) is a K.l.s.m, if
each fiber is a ϕ-invariant semi-Riemannian submanifold of M̄ and tangent to vector field ξ.

Therefore, we produced the following results:

Lemma 4. Let ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) be a K.l.s.s then for X ∈ H(M̄) and E ∈ V(M̄),
we have

AXξ = X, (31)

TEξ = E, (32)

∇′Eξ = 0, (33)

V∇̄Xξ = 0. (34)

Proof. In light of Lemma 3, one produces the above relations.

Lemma 5. Let ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) be a K.l.s.s; then, we have for E, F ∈ V(M̄) and
X, Y ∈ H(M̄).

(H∇̄X ϕ)Y = 0, (35)

AX ϕY− ϕAXY = ḡ(ϕX, Y)ξ, (36)
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AX ϕE− ϕAXE = −ν(U)ϕX, if X is basic, (37)

TE ϕX = ϕTEX, (38)

AϕXE = ϕ(AXE), (39)

(V∇̄X ϕ)E = 0, (40)

∇′E ϕ)F = ḡ(ϕE, F)ξ − ν(F)ϕE. (41)

Proof. Since vertical and horizontal distributions are ϕ-invariant for X, Y ∈ H(M̄), in view
of Lemma 3 and (10), we obtain (35). Now, (36)–(38) follows for E ∈ V(M̄) and X ∈ H(M̄)
with using Lemma 3 and (10). Similarly, we produce (39) and (40) for E, F ∈ V(M̄).
Immediately, this also gives us (41).

Adopting Lemmas 4 and 5, the following results entail:

Theorem 3. Let ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) be a K.l.s.s. Then, (N , ∇̂, ĝ) is a Kähler-like
statistical manifold and M

′
,∇′ , ϕ, ξ, ν, g

′
) a K.l.s.m.

Proof. The above lemmas show that each fiber is K.l.s.m. Now, we prove that M
′
,∇′ , ϕ, ξ, ν, g

′
)

is a Kähler-like statistical manifold. Let X, Y, Z be a basic vector field and ω related to
X̂, Ŷ, Ẑ. Now, we have

ĝ((∇̂X̂ J)Ŷ, Ẑ) = ĝ(∇̂X̂ JŶ− J∇̂X̂Ŷ, Ẑ)

= ĝ(ω∗(∇̄X ϕY)−ω∗(ϕ∇̄X), ω∗Z)

= ḡ(∇̄X ϕY− ϕ∇̄XY, Z) = ḡ((ḡ(ϕX, Y)ξ − ν(Y)ϕX, Z)).

Since (M̄, ∇̄, ḡ) is a K.l.s.m. From the above expression, we produce

(∇̂X̂ J)Ŷ = ḡ(ϕX, Y)ξ − ν(Y)ϕX, (42)

which shows that the base manifold is a Kähler-like statistical manifold.

Lemma 6. Let a K.l.s.s ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ). Then

AXY = −ḡ(X, Y)ξ + ν(X)ν(Y)ξ,

if dim(M
′
) = 1.

Proof. Consider ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) is a K.l.s.s . Thus,

(∇̄X ϕ)Y = ∇̄X ϕY− ϕ∇̄XY.

Setting Y = ϕY in the above expression, we find

= −∇̄XY + ḡ(∇̄XY, ξ)ξ + ḡ(Y, ∇̄∗Xξ)ξ + ν(Y)∇̄Xξ − ϕ∇̄X ϕY.

Adopting Lemma 3, we produce

= −AXY−H∇̄XY + ḡ(AXY, ξ)ξ − ϕAX ϕY− ϕH∇̄X ϕY. (43)

Hence, the vertical parts from (43) hold

ḡ(ϕX, ϕY)ξ = −AXY + ḡ(AXY, ξ)ξ − ϕAX ϕY.

Because ḡ(AXY, ξ) = 0, ḡ(ϕX, ϕY)ξ = −AXY. Because dim(M
′
) = 1, we obtain the

required results.
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By virtue of Lemma 4, we obtain (ϕ + ϕ∗)AXY = 0. This entails the following.

Theorem 4. Let ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) be a K.l.s.s. Then, for X, Y ∈ H(M̄), we have

AXY = −ḡ(X, Y)ξ + ν(X)ν(Y)ξ,

if rank (ϕ + ϕ∗) = dim(M
′
)− 1.

Again, in view of Lemma 1 and using (ϕ + ϕ∗)AXY = 0, we obtain the following
corollary:

Corollary 1. Let ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) be a K.l.s.s. Then, for X, Y ∈ H(M̄), we have

AXY = −ḡ(X, Y)ξ + ν(X)ν(Y)ξ,

if ϕ = ϕ∗.

6. Curvature-Based Characteristics of Kenmotsu-like Statistical Submersion

Statistical manifolds on almost Hermite-like manifolds were proposed by Takano
in [12]. if J is parallel with respect to the ∇̄, then (M̄, ∇̄, J, ḡ) is called a Kähler-like statistical
manifold [12]. Moreover, curvature tensor R on a Kähler-like manifold (M̄, ∇̄, J, ḡ) with
respect to ∇̄ is given by

R(X, Y)Z =
c
4
[ḡ(Y, Z)X− ḡ(X, Z)Y− ḡ(Y, JZ)JX (44)

+ ḡ(X, JZ)JY + (ḡ(X, JY)− ḡ(Y, JX))JZ].

Let ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) be a K.l.s.s. Then, the expression for the curvature
tensor of (M̄, ∇̄, ϕ, ξ, ν, ḡ) is given by (11). Adopting Theorem 2, we produce

ḡ(R(E, F)G, H) + ḡ(TEG, T∗F H)− ḡ(TFG, T∗EH)

=
c− 3

4
{g(E, G)ḡ(E, H)− g(E, G)ḡ(F, H)}

+
c + 1

4
{g(ϕF, G)ϕE− g(ϕE, G)ϕF

−2g(ϕE, F)ḡ(ϕG, H)− ν(F)ν(G)g(E, H)

+ν(E)ν(G)g(F, H) + ν(F)ν(G)ν(H)g(G, E)

−ν(E)ν(H)g(G, F)},

ḡ((∇̄ET)FG, X)− ḡ((∇̄FTEG, X) = 0, (45)

ḡ((∇̄ET)FX, G)− ḡ((∇̄FTEX, G) = 0, (46)

ḡ((∇̄EA)X F, Y)− ḡ((∇̄FAXE, T) + ḡ(TEX, T∗VY) (47)

− ḡ(AXE, A∗Y F) + ḡ(AX F, A∗YE)

=
c + 1

4
[ḡ(E, ϕF)− ḡ(ϕE, V)]ḡ(ϕ, X, Y),

ḡ([V∇̄X ,∇′E]E, F)− ḡ(∇̄[X,E]F, G)− ḡ(TEF, A∗XG) + ḡ(T∗EG, AX F) = 0, (48)

ḡ((∇̄XT)EF, Y)− ḡ((∇̄EAX F, Y) + ḡ(AXE, A∗Y F)− ḡ(TEX, T∗FY) (49)

=
c− 3

4
ḡ(E, F)ḡ(X, Y)− c + 1

4
[ν(E)ν(F)ḡ(X, Y) + ḡ(E, ϕF)ḡ(ϕX, Y)],

ḡ((∇̄XT)EY, F)− ḡ((∇̄EA)XY, F) + ḡ(TEX, TFY)− ḡ(AXE, AY F) (50)



Symmetry 2022, 14, 1681 10 of 13

= − c− 3
4

ḡ(E, F)ḡ(X, Y) +
c + 1

4
[ν(E)ν(F)ḡ(X, Y) + ḡ(ϕE, F)ḡ(X, ϕY)],

ḡ((∇̄XA)YE, Z)− ḡ(TEX, A∗YZ)− ḡ(TEY, A∗XZ) + ḡ(AXY, T∗EZ) = 0, (51)

ḡ(((∇̄XT)EY, Z)− ḡ((∇̄YT)EX, F)− ḡ(∇̄ET)XY, F) + ḡ(TEX, TF) (52)

=
c + 1

4
[ḡ(X, ϕY)− ḡ(ϕX, Y)]ḡ(ϕE, F),

where ΛX = AX + A∗X . We also produce

ḡ((∇̄XA)YE, Z)− ḡ(∇̄YA)XE, Z) + ḡ(T∗EZ, ΛXY) = 0, (53)

similarly
ḡ((∇̄XA)YZ, E)− ḡ(∇̄YA)XZ, E) + ḡ(TEZ, ΛXY) = 0, (54)

Now, from Theorem 2, we produce

ḡ(R̂(X, Y)Z, W)− ḡ(AYZ, A∗XW) + ḡ(AXZ, A∗XW) + ḡ(ΛXY, A∗ZW) (55)

=
c− 3

4
[ḡ(Y, Z)ḡ(X, W)− ḡ(X, Z)ḡ(Y, W)] +

c− 1
4

[−ḡ(Y, ϕZ)ḡ(ϕX, W)

+ ḡ(X, ϕZ)ḡ(ϕY, W) + (ḡ(X, ϕY)− ḡ(ϕX, Y))]ḡ(ϕZ, W),

for E, F, G, H ∈ V(M̄) and X, Y, Z, W ∈ H(M̄).

Using Lemma 5, and Theorems 4 and (55) together, we produce the following results:

Theorem 5. Let ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) be a K.l.s.s. Let the total manifold and base
manifold be holds of the curvature tensor of the (11) kind with c ∈ R and (44) with c − 3,
respectively; then, rank (ϕ + ϕ∗) = dim(M

′
)− 1.

Corollary 2. Let ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) be a K.l.s.s. If rank dim(M
′
) = 1 and the total

manifold holds the curvature tensor of the (11) kind with c ∈ R, the base manifold obeys the
curvature tensor of the (44) kind with c− 3.

Once again, using Lemma 1 and Theorem 4, Equation (49) can be reconstructed as below:

ḡ((∇̄X)T)EF, Y)− ḡ(TEX, T∗FY)

=
(c− 3)

4
[ḡ(X, Y)(ḡ(E, F)− ν(E)ν(F))− ḡ(ϕX, Y)ḡ(E, ϕF)];

thus, in light of Lemma 1, we obtain

ḡ(∇̄X N, Y)− ḡ(T∗X, T∗Y) =
(c− 3)

4
[(s− 1)ḡ(X, Y)− (trace(ϕ))ḡ(ϕX, Y)].

IfH∇̄X N = 0, then we obtain c− 3 = 0 or trace(ϕ) = 0. Thus one obtain

Theorem 6. Let ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) be a K.l.s.s and the total manifold holds the
curvature tensor of kind (11) with c. Let the rank (ϕ + ϕ∗) = dim(M

′
)− 1 andH∇̄X N = 0 for

X ∈ H(M̄). Then,

1. each fiber is totally geodesic submanifold of M̄ and the base manifold is flat if c = 3, such that
the curvature holds the kind (11) with 3.

2. here trace(ϕ) = 0 and s > 1,

(i) if g is positive definite, then c− 3 ≤ 0,
(ii) c− 3 < 0 and X is spacelike (timelike) or c− 3 > 0 and X is timelike (spacelike) if

and only if T∗X is spacelike (timelike),
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(iii) horizontal vector X is null if and only if T∗X is null.

Corollary 3. Let ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) be a K.l.s.s and the total manifold hold the
curvature tensor of kind (11) with c. If rank (ϕ + ϕ∗) = dim(M

′
)− 1 and N is a constant, the

result is identical to that of Theorem 7.

In addition, (50) clearly shows that

ḡ((∇̄∗X)T∗)EF, Y)− ḡ(T∗EX, TFY)

=
(c− 3)

4
[ḡ(X, Y)(ḡ(E, F)− ν(E)ν(F))− ḡ(ϕX, Y)ḡ(E, ϕF)],

which implies that, from Lemma 1, we obtain

ḡ(∇̄∗X N∗, Y)− ḡ(TX, TY) =
(c− 3)

4
[(s− 1)ḡ(X, Y)− (trace(ϕ))ḡ(ϕX, Y)].

IfH∇̄∗X N∗ = 0, we obtain c− 3 = 0 or trace(ϕ) = 0. Thus, we produce

Theorem 7. Let ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) be a K.l.s.s and the total manifold hold the
curvature tensor of kind (11) with c. Let rank (ϕ + ϕ∗) = dim(M

′
)− 1 and H∇̄∗X N∗ = 0 for

X ∈ H(M̄). Then

1. each fiber is totally geodesic submanifold of M̄ and the base manifold is flat if c− 3 = 0, such
that the curvature hold the (11) kind with 3.

2. in the case of trace(ϕ) = 0 and s > 1,

(i) if g is positive definite, then c− 3 ≤ 0,
(ii) c− 3 < 0 and X is spacelike (timelike) or c− 3 > 0 and X is timelike (spacelike) if

and only if TX is spacelike (timelike),
(iii) horizontal vector X is null if and only if TX is null.

Corollary 4. Let ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) be a K.l.s.s and the total manifold hold the
curvature tensor of (11) kind with c. Let the rank (ϕ + ϕ∗) = dim(M

′
)− 1 and N∗ is constant,

the result is identical to that of Theorem 7.

7. Kenmotsu-like Statistical Submersion with Conformal Fibers

This section is devoted to the K.l.s.s with conformal fibers (CFs).
Let us assume that ω, like a SS, admits CF. For E, F ∈ V(M̄) if TEF = 0 (TEF =

1
s ḡ(E, F)N) satisfies, then ω is SS with isometric fibers (CF). Then, from Lemma 1, we can
obtain TEξ = 0 .

Lemma 7. If ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) be a K.l.s.s with CFs; then, ω has isometric fibers.

Theorem 8. Let ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) be a K.l.s.s with CFs. Let the total manifold and
each fiber that is a totally geodesic submanifold of M̄ hold the curvature tensor of the (11) kind
with c.

Theorem 9. Let ω : (M̄, ∇̄, ḡ) −→ (N , ∇̂, ĝ) be a K.l.s.s with CFs and the total manifold hold
the curvature tensor of the (11) kind with c. Let the rank (ϕ + ϕ∗) = dim(M

′
)− 1; then,

1. if c = 3 the total manifold satisfies the (11) kind;
2. the base manifold is flat;
3. if c = 3, each fiber holds the (11) kind.
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Example 4. Let (M̄ = R× f B2, ∇̄, ḡ = dt2 + f 2gB) be a K.l.s.m obtained in Example 1. Then,
the K.l.s.s

ω : M̄ −→ (R2, ∇̄R2
, gR2)

as the projection mapping is defined by

ω(t, x1, x2) = (x1, x2).

From this, V(M̄) =< ∂
∂t > andH(M̄) =< ∂

∂x1
, ∂

∂x2
>. It is easy to verify that dim(M

′
) = 1

and A = 0. Hence,H(M̄) is integrable with respect to ∇̄.

Example 5. Let
(
R× f R4, ∇̂, ĝ = dt2 + f 2gR4

)
be the β−K.l.s.m given in Example 2. Next,

we describe the β− K.l.s.s F :
(
R× f R4, ∇̂, ĝ

)
→
(
R4,∇R4

, gR4

)
as the projective mapping

F(t, x1, x2, y1, y2) = (x1, x2, y1, y2).

Then, we produce V(M) =< ∂
∂t > and H(M) =< ∂

∂x1
, ∂

∂x2
, ∂

∂y1
, ∂

∂y2
>. It is trivial that

dim M = 1. Since ∂
∂x1

, ∂
∂x2

, ∂
∂y1

, ∂
∂y2
∈ H(M), we obtain A = 0.

Example 6. Let
(
R× f M̄,∇, g = dt2 + f 2 ḡ

)
be the β−K.l.s.m given in Example 3. Next we

describe the β−K.l.s.s F :
(
R× f M̄,∇, g

)
→
(

M̄, ḡ, ∇̄(1)
)

as the projective mapping.

F(x, y) = y.

8. Discussion

This subject is from differential geometry, which is a traditional yet very active branch
of pure mathematics with notable applications in a number of areas of physics. Until
recently, applications in the theory of statistics were fairly limited, but within the last few
years, there has been intensive interest in the subject. So, the geometric study of SS is new
and has many research problems.

In this discourse, we defined K.l.s.s and exhibited that, for a K.l.s.s, the base manifold is
a Kähler-like statistical manifold, and the fibers are K.l.s.m. Moreover, we characterized the
total space and the base space of such submersions. We presented a K.l.s.s along conformal
fibers having isometric fibers. Using these results, different spaces can be studied for
these issues, and many new relationships between intrinsic and extrinsic curvatures can
be discussed.
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