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Abstract

The aim of this paper is to investigate the order of approximation by some linear
summation methods of trigonometric Fourier series in weighted Orlicz spaces which
have generating Young functions not necessary to be convex. Obtained estimations base
on the fractional modulus of smoothness and the best approximation. Furthermore, a
convolution type operator is defined and its estimation by the best approximation is
obtained.

Keywords: Linear summation processes, Fourier series, trigonometric approximation,
weighted Orlicz spaces, Muckenhoupt weight.

Konveks olmasi gerekmeyen genellestirilmis Young fonksiyonu
ile iretilen Agirlikli Orlicz Uzaylarinda yaklagim

Oz

Bu calismada, konveks olmasi gerekmeyen Young fonksiyonlar: ile iiretilen agirlikli
Orlicz uzaylarinda trigonometrik Fourier serilerinin bazi lineer toplam metodlart ile
yaklasim problemleri incelenmistir. Elde edilen sonuglar kesirli diizgiinliik modiiliine ve
en iyi yaklagim sayisina dayanmaktadir. Ayrica, konvoliisyon tipli doniisiim tanimlayip,
bu doniisiim ile en iyi yaklasim sayisi arasindaki iliski degerlendirilmigtir.
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1.Introduction

The concept of Orlicz space expands the well-known concept of the space L,,p = 1.
The function t? in the defnition of the space L, is replaced by a more general convex
function which is called a Young function. Further information about Orlicz space can
be found in [11, 17]. Many applications of Orlicz spaces have emerged [16]. On the
other hand, in the paper [3], a diferent approach to the Orlicz space appeared. In this
study, Chen generalized the definition of Orlicz space saving almost all known
properties of this space. In this generalization, Young function does not have to be
convex. Later, in [1] this approach was developed with Muckenhoupt weights and was
proved direct and inverse trigonometric approximation theorems in these spaces by
Akgun. For the other papers about trigonometric approximation in these spaces, see [2,
12, 22, 4, 23]. We firstly introduce this space.

We denote by & the class of the strictly increasing functions ¢: [0, ) — [0, ) such
that ¢(o0) = oo. Let N[p, q] be denote the class of even functions ¢ € ® such that

@(x)x~P is non-decreasing and ¢(x).x~? is non-increasing when |x| is increasing
(0,0). By N < p,q >, we denote the class of function ¢ in N[p + €,q — &] for some
small number ¢, 5 > 0. Suppose that @, denotes the class of function M in N <p,q >
for some 1 < p < q < co. We say that the function M satifies the condition A, if there
exists a constant ¢ > 0 and u, > 0 such that M(2u) < cM (u) for u = u,. In this case,
we denote M € A,. The functions in @, p > 1, are continuous and satisfy the conditions

M(0)=0and M € A,. These functions may not be convex [3, p. 67-68].

Let T =[—m, m]. We say a nonnegative function w is a weight function if it is
measurable and positive almost everywhere on T.

Let M€ ®,, p>1andw be aweight function on T. We define ¢, (t) := M(t)/t.

Since 1 <p < oo, we get ¢y (t) > o as t - co. Let Y, (t) be denote the inverse
function of positive non-decreasing continuous function ¢,,(t). We set

X

Oy () = f ou(D)dt

0

and

Wy (x) = [, Yu(O)d.
®,, is a convex function and so W,,(x) is the complementary function of &, in the

sense of Young. We define the weighted Orlicz space as

Ly (T) =4 f:T = R: f measureable function andf @, (If () Dw(x)dx <
T
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On this space, we define Orlicz norm as

1m0 = sup f(lf(X)g(x)I)w(x)dx:f Pu(lg)Dwx)dx < 1
g
T

T

and the Luxemburg norm

Wy, = inf k> O!J @, (k7)) Dw(x)dx < 14,

T
The equivalence
1 Iy, o~ 11F 1t o
is valid [1].
It is seen that Ly ,(T) < L*(T) and Ly, (T) is a Banach space with the above norms
[1]. This space is called weighted Orlicz space. If we take
M(x,p) == xP,1 < p < oo, then this space becomes the weighted Lebesgue space
LP(T, w).
A weight function w: T — [0, o] belongs to the Muckenhoupt class 4,[14], 1 <p < »
if

(21, o) (&), 0P <.

1] 1|

with a finite constant C independent of the interval I with lenght < 2w, where ||
denotes the length of 1.

Without losing generality, suppose that the Fourier series of f is

> c(HetR* =T, A(f, %), (1.1)
where ¢, (f), a,,(f) and b, (f) is the Fourier coefficients of the function f € Ly, ,,(T).

Let S,(f,x),(n =0,1,2,...) be the nth partial sum of the series (1.1) at the point x, that
IS,

Su(f.20)i= 2 _ Ap(f, ).

In [1], it was proved that the operator S,,: Ly ,,(T) = Ly ,(T) is bounded in Ly, ., (T)

fMed,, p>1, w€A, and f € Ly, (T). Hence we have [1]

1S (Dl < ClF oy, n=012,..
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and

If = Sn(Dllan,w < CEn(HDwmew n=012,..

The set of trigonometric polynomials is a dense subset of Ly ,,(T) since the hypothesis
of Lemma 3 of [10] are fulfilled for M € &, ,p > 1 ,w € A,.
The well-known Steklov’s mean operator is defined as

t
(a.f)(x) :=%ff(x+u)du, O<t<mxeT.

-t

IfMed,,p>1,w € A,, it was proved that the Hardy Littlewood Maximal function
is bounded in Ly, ,,(T) [1]. So, the operator o, is bounded in Ly, ,,(T) under conditions
Med,,p>1,w€A,Forx,t €T, r>0and Ly, (T) we define

® 1 t t
ol f(x) =U—-0) f(x) = kZO(—l)"[C,:] 20" f_t ...f_tf(x +uy + upy o+ w)duy L duy,

where [C}] := w

coefficients. From the inequality

for k>1, [C{]:=7 and [CJ] =1 are binomial

c
ICEl < g, K EZY

we get

i|[c,t]|<oo

k=0

and we have

ot f (O Imw < cllf llme <
ifMed,p>1land,w € A,.

The fractional modulus of smoothness of index r > 0 for Ly, ,,(T) is defined as

[r]
Vo (f.0) = sup || [a-a)a-ayrtrlf
0<ht<é |4
=1 Mo

where [r] denotes the integer part of r. Since the operator o, is bounded in Ly, ,,(T) we
have

Mo (f,8) < cllfllme
if,w€A4,1<p<om.
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The sequence of the best approximation number of f € Ly, (T) by trigonometric
polynomials is defined by

En(f)M,w = Tig‘{r: “f - Tn”M,w

where 1, is the set of trigonometric polynomial of degree < n.

Let @ > 0 be given. We define fractional derivative (in the sense of Weyl) of a function
f € LY(T) as

F@ (x): = ao(f z f x+ ZA (F@, ).

Let Wg ., @ > 0, be the class of function f € Ly, (T) such that f® € Ly, ,(T). If « >
0,1 <p < o, then W;j , becomes a Banach space with the norm

1l = 1Ny + P,

Let {Af,n)} ,n=20,1,.., v=0,1,..n be an arbitrary infinite triangular number matrix.

We associate every function f € L*(T), on the basis of its Fourier expansion, with a
polynomial

R, (f, ) = /1(") +Z/1<”)A (f, %).

Thus, any triangular matrix {/11(,”)} determines a method for constructing the
polynomials R,,(f, ) or, in other words, a specific sequence of polynomial operators
R, (f,A) defined on the space L(T). In this case, it is also said that the matrix {/’l,(,")}

determines a specific method for summation of Fourier series. It is clear that, for every
fixed n, the operators R,,(f, 1) are linear. So, these methods are called linear methods
(processes) of summation of Fourier series.

In this work, we investigate some problems about approximation to the derivatives of
the functions in f € Ly, (T) by these linear methods. We estimate the rate of

convergence of R,(f@,1) — f@ to zero in the Ly, (T) norm by the fractional
modulus of smoothness and the best approximation.

In this paper, we will use the following notation

A(x) < B(x) & 3c > 0: A(x) < cB(x).
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2. Main results and discussion

Theorem 2.1 LetM € ®,,p > 1, w € A,(T),and f € Ly, (T). We assume that

o)

> v (P < 0

v=1

for some a € (0,00). Then for an arbitrary triangular matrix of the numbers {/1,(,”)}
(Agn) =12 =0,v>n,n=012 ) we have

| Ra(F@,0) = F@Y|, < U (FO, ),

Theorem 2.2 LetM € ®,,p > 1, w € A,(T),and f € Ly, (T). We assume that

(00}

> v (P < 0

v=1

for some a € (0,). Then for an arbitrary triangular matrix of the numbers {/1,(,”)}
(Agn) =12 =0,v>n,n=012 ) we have

1

| Ra(F@,2) = £ D, o < (BYy (F9), 850m) + EalF s

where y = min(2,p + €) with a small positive number ¢ and

2ht1q
Y . n) )
62”n Z /11J+1 |1 ’1#+1
v=2HK

(2M < n < 2MmHD),

Corollary 2.1 Let A = 1 — ﬁ foro<v<nand A =0forv>n, n=012,..
Then, for the Fejer means, we have

1/y

m
1
[RaF @, 20 = £,y < — | D Gt DEL(F@),
u=0

vk

m _ 4 _
Corollary 2.2 Let 1,,” =1 D
0,1,2, .... Then, for the Zygmund means, we have

for 0<v<nand A =0for v>n, n=

1/)/

L wa (),
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ForAd,(r) =r"(0<r<1,v=0,1,.2,..) we define

RA(LD) = ) W@AF,0).
v=0

Theorem 2.3 LetM € ®,,p > 1, w € A,(T) and f € Ly, (T). We assume that

Zfzozl va_lEv(f)M,w <®

for some a € (0, ). Then, for the Abel-Poission means, we have

1
Y

| R(f@,2) = F @, , < ((1 —7) Z P+ DY EL_(f (“))M,w>
v=0

where y = min(2,p + €) with a small positive number «.

The similar theorems have been proved in diferent function spaces fora =0andy =1
[5,7,8,9, 13, 18, 19, 20, 21].

For the function f € Ly, ,,(T), we defined a mean value operator By, f
1 h
(Brf)(x,u) :=ﬁj fx+tudt, 0<h<m x€T, —00 < U < 00,
—h

For M € ®,,p>1, w € A,(T), this operator is a bounded linear operator [1]. By
means of the operator B;, we define a convolution operator

| e wdi

with a bounded variation function p(uw) on the real line and denote

D(f,u,h,M) = U Br)(, wdu(u)

M,w

In the approximation theory, the convolution operators are widely used. This type
operators have important applications in this theory. Especially, these operators are very
useful in constructing approximating polynomials in trigonometric approximation. In
different function spaces, evaluating these operators with the best approximation
numbers is an important problem in the approximation theory. Now, we investigate the
relations between these transforms and the best approximations in the weighted Orlicz
spaces.

Theorem 2.4 LetM € ®,,p > 1, w € A,(T),and f € Ly, (T). We assume that
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0]

D VI (P < 0

v=1
for some a € (0, ). Then, for every natural number m

m 1
D@, ht1) < Y (B (F@),, %)) + Eans G @)
r=0

where y = (2,p + ¢) with a small positive number ¢ and

2T+1

6= Y AR = AL+ DI + 2™
=27

(0]

sinux
0 = <.
alx) J o du(u), 0<h<m

—00

Theorem 2.5 LetM € ®,,p > 1, w € A,(T),and f € Ly, (T). We assume that

o

D VT (P < o0

v=1
for some a € (0, ). Suppose that the function F(x) satifies the conditions

2HF1_q

IFCON < ¢, Z IF(kh) — F((k + Dh| < ¢,y  h<2m1

k=2H

with some constants c; c, . If fi; fi, are the functions satisfying the condition

fiy (1) = o F(x), x| <1

then
D(f@, s, h, M) < D(f®, up, b, M) + E2m+1(f(“))M w’

In [15], the convolution operator was defined by means of the usual shift f(x + t) and
these theorems were proved in Orlicz spaces with « = 0, y = 1. Using the operator By,
these theorems were proved in weighted Orlicz spaces, in which the Young function is
convex, in [24] with ¢ = 0,y = 1. This problem was also investigated in weighted
Lorentz spaces [23] and variable exponent Lebesgue spaces [6] with a = 0, y = 1. The
similar problem was investigated in [4] with a = 0.
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3. Auxiliary results
We give multiplier theorem and Littlewood-Paley theorem in the space Ly, , (T).

Theorem 3.1 [1] Let a sequence &, satisfy the conditions

2/-1

1§l <4 D [5Gl <4

k=2J-1

where A >0 is independent of k and j. If M € ®,,p>1,w €A,(T), and f €
Ly ,(T) then there exists a function F € Ly, ,,(T) such that the series

Aoao

+ z (@i (F) cos kx + by (f) sin kx)

is Fourier series for F and the inequality

IFllme < CAllflIme
holds with some constant Cindependent of f.

Theorem 3.2 [1] M € ®,,p > 1, w € A,(T), and f € Ly, (T) there exist constants
C > 0 and ¢ > 0 depending only on M and w such that

1
2

o | 27-1
clflmo < |[| .| D, AxGep) < Clfll
':0 k= 2] 1

M,w

4. Proofs of main results

Proof of Theorem 2.1 Let 2™ < h < 2™*1 Under the conditions of the theorem, we
have f € W,E,“(l (T) [1]. Let

SaF @, 2= ) 4,(F@, )
v=1

be the partial some of Fourier series of the function f(®. By the properties of the norm,
we have

|Rn(f @, 2) — f(a)”Mw =

D APA(F@,x) - FO)

M,w
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o)

<

D 1= 2)4,(F@,x)
v=0

M,w v=n+1

From [4, Lemma 2.1] and [1, Th 1.5 and Th.1.1] we get

[00]

3 4,

v=n+1

1
I = < En(f O < Uyp o (F@, ),

M,w

Now we estimate the norm

o 1AM nZ\'
v n
I = 2 o A,(f@,2) [ 1-
=0 sin— n
n M,w
Let
a-4"
———, v<n,
‘u(n) — sin%
T 1— T
n
0 v>n.

For the sequence {u,(,”r)} the conditions of Theorem 3.1 are satisfied. Applying Theorem
3.1 and the proof method in [1, Th. 1.9] we get

“ sinz ' & sin— '
L= ZH&?AU(}C(“),X) 1-— vn < ZAV(f(“),x) 1-— vn
v=0 n Mo v=0 n Mo
n
<10 =00 1@y, = |10 = )0 = 02y)
, v=0 M,w
[r] 1
< sw |[J0-0) 0=a @ <05, @)

0<hi,t$a i=1 Mo

This proves Theorem 2.1.

Proof of Theorem 2.2 Let2™ < h < 2™*1 \We have

n

D A4 (F@,%) = (£, )

v=0

IRa(F @, 2) = @, =

M,w
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n (o]
< Z(l—/’l,(,”))Av(f(“),x) + Z A,(F @, x)
=0 M,w v=n+1 M,w
n
<D a-AMa, @0 +E(F @),
v=1

M,w

From Theorem 3.2, we get

1
m |2#+1-1 2\ 2

<c[[[ D] D) a=aa(r@,x)

M,w u=0| v=2#

D A=A, @, x)
v=1

M,w

Using the Abel transformation, we obtain

2Kt1_q
O (X): = Z (I—Af,n))Av(f(“),x)
v=2H
2Kt1_g

= Z (S,(f, %) —Szu-1(f:x))(’11(fr4l-)1 _A'(fn))

u

#(Sawos 1 () = S (£, 0) (1 A% )

From Minkowski's inequality and the monotonicity of the sequence of the best
approximation numbers, we get

28+1_q
lonuGOll, < D SoCF ) = Suy (Mg | A — 257
v=2H
+'”52#+1—1(f'x)"'Szﬂ—1(f)x)”ALw ]-_'ASZL1
2Kt
< By P | D AT = 287] + [1 = A%,
v=2H

< CEzﬂ—1(f)qu5zﬂn-

On the other hand, we have [1]

< c(Zollone M), (4.1)

M,w

H(Z;T=0|Un,y(x)|2)l/2

where y = min(2,p + €) with a small positive number ¢. Therefore, we obtain the
required inequality
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1/]/

2(1 — )4, (@, x)

m
<c z EY s (@), 872
u=0

M,w

Proof of Theorem 2.3 Let 2™ <n = [l—ir] <2™land A,(r)=rY,0<r<1, v=
0,1,2, ... We have

IR-F@, ) = £, =
2m+1_

1
z (1 =1m)A,(f@,x) +
v=0 M,w

D=4, (F,x)
v=0

M,w
(00

(1 =4, (f @, x)

p=2m+1_1q

=. Il + 12.

M,w

It is easily seen that the conditions of Theorem 3.1 are satisfied for the sequence
{1 — rv}. Then, by Theorem 3.1, [4, Lemma 2.1] and [1, Th.1.5] we have

oo

I, <c

A, (9, x)

p=2m+1

< cEn(f(“))Mw.
M,w

From Theorem 3.2 and (4.1)

1
m |2v+i_q 2\ 2

I, < (1-rMA,(f®,x)
2|2

v=0| pu=2"?
M,w
1
ov+1_q 14 y
<[Xm, Z (1—r")A,(F @, x) .
p=2v M,w

Applying Abel's transform and Theorem 3.1, we get

2v+1_1
Z 1- r”)Au(f(“),x)
u=2v M,w
2v+1_1
< D ISu(F@x) = S (FO, D), It = 4]
u=2v

2U+1

+ ||Szv+1_1(f(“),x) - Sz”—l(f(a)'x)”M,wll -r
S CEZV_l(f(a))M'wZU-'_l(l - T).

From the monotonicity of the best approximation, we have
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V+1_q Y

> a-ma @ B, (@),, 2¢ -

u=2v

M,w
2V-1
<c(l-r) Z Eyo_(f),, .-
u=217—1 ’
Then we get
1
2V-1 1%
h<e| A= a(@, a-nr > wrE(F@),
M=2v—1
1/y
n
<c{@-7) Z(“ + D EN(f),
©=0 '
Therefore, we have
n 1/1’
IR @2 = £, < =) D Gt DTEL(F@), |+ Bl @i

u=0
1
<c(1-r) (Zﬁ=or”(u + D" E(f (“))M,w) "

Proof of Theorem 2.4 Let m €N, 2™ < h < 2™*1, Under the conditions of the
theorem, we have f € W,&“(l (T) [1]. We suppose that

2m+1

Synaf@:= ) G (f@)elts

k=1

is the partial sum of Fourier series of the function £(®). From the definition of the
quantity D(f®, u, h, M) and the properties of the norm we have

D(f(a),/l, h, M) —

| B wduco

M,w

[ 1B w = (Busmen f©)6xw))dn ()

IA

M,»
00

+|| [ Basamear @) wduco

—® M,»

By the boundedness of the operator B, and [1,Th.1.5], we obtain
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f [Buf @)(t,1) = (BuSymos f@)Cr,10)]d ()

M,w

<c [ @000 - Basamesf D), @)
= [ 1(B:lr@ = ausmaf @) )], dutw

<c f If@ = Symesf @], duw

j IF9 = Symesf @], duw

s

< CEynns (f@),, .

dp(u)
M,

So, we have

D(f(a),/,t, h, M) < + CE2m+1(f(a))Mw.

[ @S @) duco

M,»
Then we get
I0s) 0o 1 h
J(BhSzmnf(“))(x,u)du(u) = j o j52m+1f(“)(x+tu)dt du(u)
—c0 —00 —h
0 h2m+1
1 .
— j ﬁjz Cr(f(a))elr(xﬂu) dt du(u)
—00 —-h r=1
o) 1 2m+1 h
— f ﬁz Cr(]c(a))eirx feirtudt d,u(u)
—© r=1 —h
om+1 ] ]
(DN irx elrhu __ ,—irhu p
= Z G (F e [ S duw
27;1:+1 e

= > AF@,0p6h).

Therefore, we have
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2m+1

DO mh M) < || Y 4@ 0aED|  +Ema(F9),,
r=1

M,w

From Theorem 3.2 and [1], we obtain

om+1 m |ar+1 2\ 2

> ag@open| <[ D> aeaaw

= =27
Mo r=0 |1
M,w
1

m 2
= ¢ (ZM#) < c
r=0

M,w
m % m 1/
D[ =Xl
r=0 r=0
M,w

Applying the Abel transform to A

3 @)f

r=0

M,w

ru» W get

2T+1

Bry= ) [Sf @0 = S f @] AR — A+ D)
=27
+ [Syreaf @ (x) = Sor f@ ()] a(27h).

From [1, Th. 1.5],

2T+1

147l = 2 IS,/ @) = Sprea f @@, (@R = AL+ 1A)
=27

+ [|Srea f @) = Spr f O, AR
<EYpr(f©),, 6"

Then
om+1_q m %
z A (F e perh)|| < (Z EY yroa(f@) 6@,1) .
r=1 r=0

This completes the proof.

Proof of Theorem 2.5 Under the conditions of the theorem, we have f € W,Sf‘z)(T)
[1].We have
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f (BrSymes @) (6, w)dp(ur)

+ E,m+1 (f(a))M ®
M,»

From the the properties of the function and Theorem 3.1, we obtain

[o'%) 2m+1
| Bsmr | =[] ar@emnen
—o0 M, r=1 M
2m+1
=D @, anran
r=1 Mo
2m+1 ’ [o'0)

<cl| D G @) =

S [ Baf O wdn||  <c

| BrSames f Oy ()

- M,

r=1

[ B wdinw

M,w M,»

This completes the proof.
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