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Abstract 

 

The aim of this paper is to investigate the order of approximation by some linear 

summation methods of trigonometric Fourier series in weighted Orlicz spaces which 

have generating Young functions not necessary to be convex. Obtained estimations base 

on the fractional modulus of smoothness and the best approximation. Furthermore, a 

convolution type operator is defined and its estimation by the best approximation is 

obtained. 

 

Keywords: Linear summation processes, Fourier series, trigonometric approximation, 

weighted Orlicz spaces, Muckenhoupt weight. 

 

 

 

Konveks olması gerekmeyen genelleştirilmiş Young fonksiyonu 

ile üretilen Ağırlıklı Orlicz Uzaylarında yaklaşım 
 

 

Öz 

 

Bu çalışmada, konveks olması gerekmeyen Young fonksiyonları ile üretilen ağırlıklı 

Orlicz uzaylarında trigonometrik Fourier serilerinin bazı lineer toplam metodları ile 

yaklaşım problemleri incelenmiştir. Elde edilen sonuçlar kesirli düzgünlük modülüne ve 

en iyi yaklaşım sayısına dayanmaktadır. Ayrıca, konvolüsyon tipli dönüşüm tanımlayıp, 

bu dönüşüm ile en iyi yaklaşım sayısı arasındaki ilişki değerlendirilmiştir.  
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1.Introduction  

 

The concept of Orlicz space expands the well-known concept of the space 𝐿𝑝, 𝑝 ≥ 1. 

The function 𝑡𝑝 in the defnition of the space 𝐿𝑝 is replaced by a more general convex 

function which is called a Young function. Further information about Orlicz space can 

be found in [11, 17]. Many applications of Orlicz spaces have emerged [16]. On the 

other hand, in the paper [3], a diferent approach to the Orlicz space appeared. In this 

study, Chen generalized the definition of Orlicz space saving almost all known 

properties of this space. In this generalization, Young function does not have to be 

convex. Later, in [1] this approach was developed with Muckenhoupt weights and was 

proved direct and inverse trigonometric approximation theorems in these spaces by 

Akgun. For the other papers about trigonometric approximation in these spaces, see [2, 

12, 22, 4, 23]. We firstly introduce this space. 

 

We denote by Φ the class of the strictly increasing functions 𝜙: [0,∞) → [0,∞) such 

that  𝜙(∞) = ∞. Let 𝑁[𝑝, 𝑞] be denote the class of even functions 𝜑 ∈ Φ such that 

  𝜑(𝑥)𝑥−𝑝 is non-decreasing and 𝜑(𝑥). 𝑥−𝑞 is non-increasing when |𝑥| is increasing 
(0,∞).  By 𝑁 < 𝑝, 𝑞 >, we denote the class of function 𝜑 in 𝑁[𝑝 + 𝜀, 𝑞 − 𝛿] for some 

small number 𝜀, 𝛿 > 0. Suppose that Φp denotes the class of function 𝑀 in 𝑁 < 𝑝, 𝑞 > 

for some 1 < 𝑝 ≤ 𝑞 < ∞.  We say that the function 𝑀 satifies the condition ∆2 if there 

exists a constant 𝑐 > 0 and 𝑢0 > 0 such that 𝑀(2𝑢) ≤ 𝑐𝑀(𝑢) for 𝑢 ≥ 𝑢0. In this case, 

we denote 𝑀 ∈ ∆2. The functions in Φp, p > 1, are continuous and satisfy the conditions 

M(0) = 0 and 𝑀 ∈ ∆2.  These functions may not be convex [3, p. 67-68]. 

 

Let 𝑇 = [−𝜋, 𝜋]. We say a nonnegative function 𝜔 is a weight function if it is 

measurable and positive almost everywhere on 𝑇.  
 

Let   𝑀 ∈ Φ𝑝,   𝑝 > 1 and 𝜔 be a weight function on 𝑇. We define 𝜑𝑀(𝑡) ≔ 𝑀(𝑡) 𝑡⁄ . 

Since 1 < 𝑝 < ∞, we get 𝜑𝑀(𝑡) → ∞ as 𝑡 → ∞. Let 𝜓𝑀(𝑡) be denote the inverse 

function of positive non-decreasing continuous function 𝜑𝑀(𝑡). We set  

 

Φ𝑀(𝑥) = ∫𝜑𝑀(𝑡)𝑑𝑡

𝑥

0

 

 

and 

 

Ψ𝑀(𝑥) = ∫ 𝜓𝑀(𝑡)𝑑𝑡
𝑥

0
. 

 

Φ𝑀 is a convex function and so Ψ𝑀(𝑥) is the complementary function of Φ𝑀, in the 

sense of Young. We define the weighted Orlicz space as 

 

𝐿𝑀,𝜔(𝑇) = {𝑓: 𝑇 → 𝑅: 𝑓 measureable function and∫ 𝛷𝑀(|𝑓(𝑥)|)𝜔(𝑥)𝑑𝑥 < ∞

𝑇

} 
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On this space, we define Orlicz norm as  
 

‖𝑓‖𝑀,𝜔 ≔ sup
𝑔
{∫(|𝑓(𝑥)𝑔(𝑥)|)𝜔(𝑥)𝑑𝑥:∫ 𝛹𝑀(|𝑔(𝑥)|)𝜔(𝑥)𝑑𝑥 ≤ 1

𝑇𝑇

} 

 

and the Luxemburg norm 

 

‖𝑓‖(𝑀),𝜔 ≔ 𝑖𝑛𝑓 {𝑘 > 0:∫ Φ𝑀(𝑘
−1|𝑓(𝑥)|)𝜔(𝑥)𝑑𝑥 ≤ 1

𝑇

}. 

 

The equivalence 

 
‖𝑓‖(𝑀),𝜔~‖𝑓‖𝑀,𝜔 

 

is valid [1]. 

  

It is seen that 𝐿𝑀,𝜔(𝑇) ⊂ 𝐿
1(𝑇) and 𝐿𝑀,𝜔(𝑇) is a Banach space with the above norms 

[1]. This space is called weighted Orlicz space. If we take  
𝑀(𝑥, 𝑝) ≔ 𝑥𝑝, 1 < 𝑝 < ∞, then this space becomes the weighted Lebesgue space 

𝐿𝑝(𝑇, 𝜔). 
 

A weight function 𝜔: 𝑇 → [0,∞]  belongs to the Muckenhoupt class 𝐴𝑝[14], 1 < 𝑝 < ∞  

if 

 

(
1

|𝐼|
∫ 𝜔(𝑥)𝑑𝑥
𝐼

) (
1

|𝐼|
∫ 𝜔

1

1−𝑝(𝑥)𝑑𝑥
𝐼

)
𝑝

≤ 𝐶, 

 

with a finite constant 𝐶 independent of the interval 𝐼 with lenght ≤ 2𝜋, where |𝐼| 
denotes the length of 𝐼.  
 

Without losing generality, suppose that the Fourier series of 𝑓 is 

 

∑ 𝑐𝑘(𝑓)𝑒
𝑖𝑘𝑥∞

𝑘=1
=:∑ 𝐴𝑘(𝑓, 𝑥),

∞
𝑘=1                                                                             (1.1) 

 

where 𝑐𝑘(𝑓), 𝑎𝑣(𝑓) and 𝑏𝑣(𝑓) is the Fourier coefficients of the function 𝑓 ∈ 𝐿𝑀,𝜔(𝑇). 
 

Let 𝑆𝑛(𝑓, 𝑥), (𝑛 = 0,1,2, … ) be the 𝑛th partial sum of the series (1.1) at the point 𝑥, that 

is, 

 

𝑆𝑛(𝑓, 𝑥): = ∑ 𝐴𝑘(𝑓, 𝑥)
𝑛

𝑘=1
. 

 

In [1], it was proved that the operator 𝑆𝑛: 𝐿𝑀,𝜔(𝑇) → 𝐿𝑀,𝜔(𝑇) is bounded in 𝐿𝑀,𝜔(𝑇) 

if 𝑀 ∈ Φ𝑝 ,   𝑝 > 1 , 𝜔 ∈ 𝐴𝑝   and 𝑓 ∈ 𝐿𝑀,𝜔(𝑇). Hence we have [1] 

 
‖𝑆𝑛(𝑓)‖(𝑀),𝜔 ≤ 𝐶‖𝑓‖(𝑀),𝜔                  𝑛 = 0,1,2, …                                                           
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and 

 
‖𝑓 − 𝑆𝑛(𝑓)‖(𝑀),𝜔 ≤ 𝐶. 𝐸𝑛(𝑓)(𝑀),𝜔    𝑛 = 0,1,2,…      

 

The set of trigonometric polynomials is a dense subset of 𝐿M,ω(T) since the hypothesis 

of Lemma 3 of [10] are fulfilled for 𝑀 ∈ Φ𝑝 , 𝑝 > 1  , 𝜔 ∈ 𝐴𝑝.  

The well-known Steklov’s mean operator is defined as 

 

(𝜎𝑡𝑓)(𝑥) ≔
1

2𝑡
∫𝑓(𝑥 + 𝑢)𝑑𝑢,

𝑡

−𝑡

 0 < 𝑡 < 𝜋, 𝑥 ∈ 𝑇. 

 

If 𝑀 ∈ Φ𝑝 , 𝑝 > 1  , 𝜔 ∈ 𝐴𝑝, it was proved that the Hardy Littlewood Maximal function 

is bounded in 𝐿𝑀,𝜔(𝑇) [1]. So, the operator 𝜎𝑡 is bounded in 𝐿𝑀,𝜔(𝑇) under conditions 

𝑀 ∈ Φ𝑝 , 𝑝 > 1  , 𝜔 ∈ 𝐴𝑝. For 𝑥, 𝑡 ∈ 𝑇, 𝑟 > 0 and 𝐿𝑀,𝜔(𝑇) we define 

 

𝜎𝑡
𝑟
 
𝑓(𝑥) ≔ (𝐼 − 𝜎𝑡)

𝑟𝑓(𝑥) = ∑(−1)𝑘[𝐶𝑘
𝑟]

1

(2𝑡)𝑘
∫ …∫ 𝑓(𝑥 + 𝑢1 + 𝑢2+…+ 𝑢𝑘)𝑑𝑢1…

𝑡

−𝑡

𝑑𝑢𝑘,

𝑡

−𝑡

∞

𝑘=0

 

 

where [𝐶𝑘
𝑟] ≔

𝑟.(𝑟−1)…(𝑟−𝑘+1)

𝑘!
  for 𝑘 > 1, [𝐶1

𝑟]: = 𝑟 and [𝐶0
𝑟] = 1 are binomial 

coefficients. From the inequality 

 

|[𝐶𝑘
𝑟]| ≤

𝑐

𝑘𝑟+1
,     𝑘 ∈ 𝑍+ 

 

we get 

 

∑|[𝐶𝑘
𝑟]| < ∞

∞

𝑘=0

 

 

and we have 

 
‖𝜎𝑡

𝑟𝑓(𝑥)‖𝑀,𝜔 ≤ 𝑐‖𝑓‖𝑀,𝜔 < ∞ 

if 𝑀 ∈ Φ𝑝, 𝑝 > 1 and , 𝜔 ∈ 𝐴𝑝. 

 

The fractional modulus of smoothness of index 𝑟 > 0 for 𝐿𝑀,𝜔(𝑇) is defined as  

 

Ω𝑀,𝜔
𝑟 (𝑓, 𝛿) ≔ sup

0<ℎ𝑖,𝑡≤𝛿
‖∏(Ι − 𝜎𝑡𝑖)(Ι − 𝜎𝑡)

𝑟−[𝑟]

[𝑟]

𝑖=1

𝑓‖

𝑀,𝜔

 

 

where [𝑟] denotes the integer part of 𝑟. Since the operator 𝜎𝑡 is bounded in 𝐿𝑀,𝜔(𝑇) we 

have  

 
Ω𝑀,𝜔
𝑟 (𝑓, 𝛿) ≤ 𝑐‖𝑓‖𝑀,𝜔  

if , 𝜔 ∈ 𝐴𝑝, 1 < 𝑝 < ∞. 
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The sequence of the best approximation number of 𝑓 ∈ 𝐿𝑀,𝜔(𝑻) by trigonometric 

polynomials is defined by  

 

𝐸𝑛(𝑓)𝑀,𝜔 = inf
𝑇𝑛∈𝜏𝑛

‖𝑓 − 𝑇𝑛‖𝑀,𝜔 

 

where 𝜏𝑛 is the set of trigonometric polynomial of degree ≤ 𝑛. 
 

Let 𝛼 > 0 be given. We define fractional derivative (in the sense of Weyl) of a function 

𝑓 ∈ 𝐿1(𝑇) as  

 

𝑓(𝛼)(𝑥): =
𝑎0(𝑓)

2
+∑𝑣𝛼𝐴𝑣 (𝑓, 𝑥 +

𝛼𝜋

2𝑣
) =:

∞

𝑣=1

∑𝐴𝑣(𝑓
(𝛼), 𝑥).

∞

𝑣=0

 

 

Let 𝑊𝑀,𝜔
𝛼 , 𝛼 > 0, be the class of function 𝑓 ∈ 𝐿𝑀,𝜔(𝑻) such that 𝑓(𝛼) ∈ 𝐿𝑀,𝜔(𝑻). If 𝛼 >

0 , 1 < 𝑝 < ∞, then 𝑊𝑀,𝜔
𝛼  becomes a Banach space with the norm  

 

‖𝑓‖𝑊𝑀,𝜔𝛼 ≔ ‖𝑓‖𝐿𝑀,𝜔 + ‖𝑓
(𝛼)‖

𝐿𝑀,𝜔
. 

 

Let {𝜆𝑣
(𝑛)
} , 𝑛 = 0,1, … , 𝑣 = 0,1, … 𝑛 be an arbitrary infinite triangular number matrix. 

We associate every function 𝑓 ∈ 𝐿1(𝑇), on the basis of its Fourier expansion, with a 

polynomial 

 

𝑅𝑛(𝑓, 𝜆) ≔
𝑎0
2
𝜆0
(𝑛) +∑𝜆𝑣

(𝑛)

𝑛

𝜈=1

𝐴𝜈(𝑓, 𝑥). 

 

Thus, any triangular matrix {𝜆𝑣
(𝑛)
} determines a method for constructing the 

polynomials 𝑅𝑛(𝑓, 𝜆) or, in other words, a specific sequence of polynomial operators 

𝑅𝑛(𝑓, 𝜆) defined on the space 𝐿1(𝑇). In this case, it is also said that the matrix {𝜆𝑣
(𝑛)
} 

determines a specific method for summation of Fourier series. It is clear that, for every 

fixed 𝑛, the operators 𝑅𝑛(𝑓, 𝜆) are linear. So, these methods are called linear methods 

(processes) of summation of Fourier series. 

 

In this work, we investigate some problems about approximation to the derivatives of 

the functions in 𝑓 ∈ 𝐿𝑀,𝜔(𝑻) by these linear methods. We estimate the rate of 

convergence of 𝑅𝑛(𝑓
(𝛼), 𝜆) − 𝑓(𝛼) to zero in the 𝐿𝑀,𝜔(𝑻) norm by the fractional 

modulus of smoothness and the best approximation. 

 

In this paper, we will use the following notation 

 

𝐴(𝑥) ≼ 𝐵(𝑥) ⟺ ∃𝑐 > 0: 𝐴(𝑥) ≤ 𝑐𝐵(𝑥). 
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2.  Main results and discussion 

 

Theorem 2.1 Let 𝑀 ∈ Φ𝑝, 𝑝 > 1,  𝜔 ∈ 𝐴𝑝(𝑇) , and  𝑓 ∈ 𝐿𝑀,𝜔(𝑻). We assume that  

 

∑𝑣𝛼−1𝐸𝑣(𝑓)𝑀,𝜔 < ∞

∞

𝑣=1

 

 

for some 𝛼 ∈ (0,∞). Then for an arbitrary triangular matrix of the numbers {𝜆𝑣
(𝑛)
} 

(𝜆0
(𝑛) = 1, 𝜆𝑣

(𝑛) = 0, 𝑣 > 𝑛 , 𝑛 = 0,1,2,… ), we have  

 

‖ 𝑅𝑛(𝑓
(𝛼), 𝜆) − 𝑓(𝛼)‖

𝑀,𝜔
≤ Ω𝑀,𝜔

𝑟 (𝑓(𝛼),
1

𝑛
). 

. 

Theorem 2.2  Let 𝑀 ∈ Φ𝑝, 𝑝 > 1,  𝜔 ∈ 𝐴𝑝(𝑇) , and  𝑓 ∈ 𝐿𝑀,𝜔(𝑻). We assume that  

 

∑𝑣𝛼−1𝐸𝑣(𝑓)𝑀,𝜔 < ∞

∞

𝑣=1

 

 

for some 𝛼 ∈ (0,∞). Then for an arbitrary triangular matrix of the numbers {𝜆𝑣
(𝑛)
} 

(𝜆0
(𝑛) = 1, 𝜆𝑣

(𝑛) = 0, 𝑣 > 𝑛 , 𝑛 = 0,1,2,… ), we have 

 

‖ 𝑅𝑛(𝑓
(𝛼), 𝜆) − 𝑓(𝛼)‖

𝑀,𝜔
≤ (𝐸2𝜇−1

𝛾
(𝑓(𝛼))

𝑀,𝜔
𝛿2𝜇,𝑛
𝛾

)

1
𝛾
+ 𝐸𝑛(𝑓

(𝛼))𝑀,𝜔 

 

where 𝛾 = 𝑚𝑖𝑛(2, 𝑝 + 𝜀) with a small positive number 𝜀 and  

 

𝛿2𝜇,𝑛
𝛾

≔ ∑ |𝜆𝑣+1
(𝑛) − 𝜆𝑣

(𝑛)| + |1 − 𝜆
2𝜇+1
(𝑛) |

2𝜇+1−1

𝑣=2𝜇

 

(2𝑚 ≤ 𝑛 < 2𝑚+1). 
 

Corollary 2.1 Let 𝜆𝑣
(𝑛) = 1 −

𝜈

𝑛+1
  for 0 ≤ 𝜈 ≤ 𝑛 and 𝜆𝑣

(𝑛) = 0 for 𝜈 > 𝑛 , 𝑛 = 0,1,2,…. 

Then, for the Fejer means, we have  

 

‖𝑅𝑛(𝑓
(𝛼), 𝜆) − 𝑓(𝛼)‖

𝑀,𝜔
≼

1

𝑛 + 1
(∑(𝜇 + 1)𝛾−1𝐸𝜇

𝛾
(𝑓(𝛼))

𝑀,𝜔

𝑚

𝜇=0

)

1
𝛾⁄

. 

 

Corollary 2.2 Let 𝜆𝑣
(𝑛) = 1 −

𝜈𝑘

(𝑛+1)𝑘
  for 0 ≤ 𝜈 ≤ 𝑛 and 𝜆𝑣

(𝑛) = 0 for 𝜈 > 𝑛 , 𝑛 =

0,1,2, …. Then, for the Zygmund means, we have 

 

‖𝑅𝑛(𝑓
(𝛼), 𝜆) − 𝑓(𝛼)‖

𝑝𝑞,𝜔
≼

1

(𝑛 + 1)𝑘
(∑(𝜇 + 1)𝛾𝑘−1𝐸𝛾𝜇(𝑓

(𝛼))
𝑝𝑞,𝜔

𝑚

𝜇=0

)

1
𝛾⁄

. 
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For 𝜆𝜈(𝑟) = 𝑟
𝜈  ( 0 ≤ 𝑟 < 1, 𝜈 = 0,1,2, …) we define   

 

𝑅𝑟(𝑓, 𝜆) ≔∑𝜆𝜈(𝑟)𝐴𝜈(𝑓, 𝑥).

∞

𝜈=0

 

 

Theorem 2.3 Let 𝑀 ∈ Φ𝑝, 𝑝 > 1,  𝜔 ∈ 𝐴𝑝(𝑇)  and 𝑓 ∈ 𝐿𝑀,𝜔(𝑻). We assume that 

 

 ∑ 𝑣𝛼−1𝐸𝑣(𝑓)𝑀,𝜔 < ∞∞
𝑣=1  

 

for some 𝛼 ∈ (0,∞). Then, for the Abel-Poission means, we have  

 

‖ 𝑅𝑟(𝑓
(𝛼), 𝜆) − 𝑓(𝛼)‖

𝑀,𝜔
≼ ((1 − 𝑟)∑𝑟𝑣(𝑣 + 1)𝛾−1𝐸2𝑣−1

𝛾
(𝑓(𝛼))

𝑀,𝜔

∞

𝑣=0

)

1
𝛾

 

 

where 𝛾 = 𝑚𝑖𝑛(2, 𝑝 + 𝜀) with a small positive number 𝜀. 
 

The similar theorems have been proved in diferent function spaces for 𝛼 = 0 and 𝛾 = 1 

[5, 7, 8, 9, 13, 18, 19, 20, 21]. 

 

For the function 𝑓 ∈ 𝐿𝑀,𝜔(𝑻), we defined a mean value operator 𝐵ℎ𝑓 

 

(𝐵ℎ𝑓)(𝑥, 𝑢) ≔
1

2ℎ
∫ 𝑓(𝑥 + 𝑡𝑢)𝑑𝑡,
ℎ

−ℎ

  0 < ℎ < 𝜋,   𝑥 ∈ 𝑇, −∞ < 𝑢 < ∞. 

 

For 𝑀 ∈ Φ𝑝, 𝑝 > 1,  𝜔 ∈ 𝐴𝑝(𝑇), this operator is a bounded linear operator [1]. By 

means of the operator 𝐵ℎ we define a convolution operator  

 

∫ (𝐵ℎ𝑓)(. , 𝑢)𝑑𝜇(𝑢)
∞

−∞

 

 

with a bounded variation function 𝜇(𝑢) on the real line and denote 

 

𝐷(𝑓, 𝜇, ℎ,𝑀) ≔ ‖∫ (𝐵ℎ𝑓)(. , 𝑢)𝑑𝜇(𝑢)
∞

−∞

‖
𝑀,𝜔

. 

 

In the approximation theory, the convolution operators are widely used. This type 

operators have important applications in this theory. Especially, these operators are very 

useful in constructing  approximating polynomials in trigonometric approximation. In 

different function spaces, evaluating these operators with the best approximation 

numbers is an important problem in the approximation theory. Now, we investigate the 

relations between these transforms and the best approximations in the weighted Orlicz 

spaces. 

 

Theorem 2.4  Let 𝑀 ∈ Φ𝑝, 𝑝 > 1,  𝜔 ∈ 𝐴𝑝(𝑇) , and  𝑓 ∈ 𝐿𝑀,𝜔(𝑻). We assume that  
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∑𝑣𝛼−1𝐸𝑣(𝑓)𝑀,𝜔 < ∞

∞

𝑣=1

 

 

for some 𝛼 ∈ (0,∞).  Then, for every natural number 𝑚  

 

𝐷(𝑓(𝛼), 𝜇, ℎ,𝑀) ≼∑(𝐸2𝑟
𝛾
(𝑓(𝛼))

𝑀,𝜔
𝛿2𝑟,ℎ
𝛾
)

1
𝛾
+ 𝐸2𝑚+1(𝑓

(𝛼))𝑀,𝜔

𝑚

𝑟=0

 

 

where 𝛾 = (2, 𝑝 + 𝜀) with a small positive number 𝜀 and  

 

𝛿2𝑟,ℎ
𝛾

≔ ∑|�̂�(𝑙ℎ) − �̂�((𝑙 + 1)ℎ| + |�̂�(2𝑟ℎ)|

2𝑟+1

𝑙=2𝑟

, 

�̂�(𝑥) ≔ ∫
𝑠𝑖𝑛𝑢𝑥

𝑢𝑥
𝑑𝜇(𝑢),

∞

−∞

    0 < ℎ ≤ 𝜋. 

 

Theorem 2.5  Let 𝑀 ∈ Φ𝑝, 𝑝 > 1,  𝜔 ∈ 𝐴𝑝(𝑇) , and  𝑓 ∈ 𝐿𝑀,𝜔(𝑻). We assume that  

 

∑𝑣𝛼−1𝐸𝑣(𝑓)𝑀,𝜔 < ∞

∞

𝑣=1

 

 

for some 𝛼 ∈ (0,∞).  Suppose that the function 𝐹(𝑥) satifies the conditions  

 

‖𝐹(𝑥)‖ ≤ 𝑐1 , ∑ |𝐹(𝑘ℎ) − 𝐹((𝑘 + 1)ℎ| ≤ 𝑐2, ℎ ≤ 2−𝑚−1 

2𝜇+1−1

𝑘=2𝜇

 

 

with some constants  𝑐1, 𝑐2 . If �̂�1, �̂�2 are the functions satisfying the condition  

 

�̂�1 (𝑥) = �̂�2 (𝑥)𝐹(𝑥),     |𝑥| < 1 

 

then  

 

𝐷(𝑓(𝛼), 𝜇1, ℎ,𝑀) ≼ 𝐷(𝑓
(𝛼), 𝜇2, ℎ,𝑀) + 𝐸2𝑚+1(𝑓

(𝛼))
𝑀,𝜔

. 

 

In [15], the convolution operator was defined by means of the usual shift 𝑓(𝑥 + 𝑡) and 

these theorems were proved in Orlicz spaces with 𝛼 = 0, 𝛾 = 1. Using the operator 𝐵ℎ 

these theorems were proved in weighted Orlicz spaces, in which the Young function is 

convex, in [24] with 𝛼 = 0, 𝛾 = 1. This problem was also investigated in weighted 

Lorentz spaces [23] and variable exponent Lebesgue spaces [6] with 𝛼 = 0, 𝛾 = 1. The 

similar problem was investigated in [4] with 𝛼 = 0. 
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3. Auxiliary results 

 

We give multiplier theorem and Littlewood-Paley theorem in the space 𝐿𝑀,𝜔(𝑻). 
 

Theorem 3.1 [1] Let a sequence 𝜉𝑘 satisfy the conditions 

 

|𝜉𝑘| ≤ 𝐴, ∑ |𝜉𝑘 − 𝜉𝑘+1| ≤ 𝐴

2𝑗−1

𝑘=2𝑗−1

 

 

where  𝐴 > 0 is independent of 𝑘 and 𝑗. If 𝑀 ∈ Φ𝑝, 𝑝 > 1,𝜔 ∈ 𝐴𝑝(𝑇) , and  𝑓 ∈

𝐿𝑀,𝜔(𝑻) then there exists a function 𝐹 ∈ 𝐿𝑀,𝜔(𝑻) such that the series  

 

𝜆0𝑎0
2

+∑𝜆𝑘(𝑎𝑘(𝑓) cos 𝑘𝑥 + 𝑏𝑘(𝑓) sin 𝑘𝑥)

∞

𝑘=0

 

 

is Fourier series for 𝐹 and the inequality 

 

 
‖𝐹‖𝑀,𝜔 ≤ 𝐶𝐴‖𝑓‖𝑀,𝜔 

 

holds with some constant 𝐶independent of 𝑓. 

 

Theorem 3.2  [1] 𝑀 ∈ Φ𝑝, 𝑝 > 1,  𝜔 ∈ 𝐴𝑝(𝑇) , and  𝑓 ∈ 𝐿𝑀,𝜔(𝑻) there exist constants 

𝐶 > 0 and 𝑐 > 0 depending only on 𝑀 and 𝜔 such that  

 

𝑐‖𝑓‖𝑀,𝜔 ≤ ‖(∑| ∑ 𝐴𝑘(𝑥, 𝑓)

2𝑗−1

𝑘=2𝑗−1

|

2
∞

𝑗=0

)‖

𝑀,𝜔

1
2

≤ 𝐶‖𝑓‖𝑀,𝜔. 

 

 

4.  Proofs of main results 

 

Proof of Theorem 2.1  Let 2𝑚 ≤ ℎ < 2𝑚+1. Under the conditions of the theorem, we 

have 𝑓 ∈ 𝒲𝑀,𝜔
(𝛼) (𝑻) [1]. Let  

 

𝑆𝑛(𝑓
(𝛼), 𝑥): = ∑𝐴𝑣(𝑓

(𝛼), 𝑥)

𝑛

𝑣=1

 

 

be the partial some of Fourier series of the function 𝑓(𝛼). By the properties of the norm, 

we have  

 

‖𝑅𝑛(𝑓
(𝛼), 𝜆) − 𝑓(𝛼)‖

𝑀,𝜔
= ‖∑𝜆𝑣

(𝑛)𝐴𝑣(𝑓
(𝛼), 𝑥) −

𝑛

𝑣=0

𝑓(𝛼)(𝑥)‖

𝑀,𝜔
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≤ ‖∑(1 − 𝜆𝑣
(𝑛))𝐴𝑣(𝑓

(𝛼), 𝑥)

𝑛

𝑣=0

‖

𝑀,𝜔

+ ‖ ∑ 𝐴𝑣𝑓
(𝛼)(𝑥)

∞

𝑣=𝑛+1

‖

𝑀,𝜔

=: 𝐼1 + 𝐼2. 

 

From [4, Lemma 2.1] and [1, Th 1.5 and Th.1.1] we get  

 

𝐼2 = ‖ ∑ 𝐴𝑣(𝑓
(𝛼), 𝑥)

∞

𝑣=𝑛+1

‖

𝑀,𝜔

≼ 𝐸𝑛(𝑓
(𝛼))𝑀,𝜔 ≼ Ω𝑀,𝜔

𝑟 (𝑓(𝛼),
1

𝑛
).   

 

Now we estimate the norm  

 

𝐼1 =

‖

‖

∑
1− 𝜆𝑣

(𝑛)

(1 −
𝑠𝑖𝑛

𝑣
𝑛

𝑣
𝑛

)

𝑟

𝑛

𝑣=0

𝐴𝑣(𝑓
(𝛼), 𝑥) (1 −

𝑠𝑖𝑛
𝑣
𝑛

𝑣
𝑛

)

𝑟

‖

‖

𝑀,𝜔

. 

 

Let  

 

𝜇𝑣,𝑟
(𝑛) ≔

{
 
 

 
 (1 − 𝜆𝑣

(𝑛))

(1 −
𝑠𝑖𝑛

𝑣
𝑛

𝑣
𝑛

)

𝑟 ,     𝑣 ≤ 𝑛,    

      0                     𝑣 > 𝑛. }
 
 

 
 

 

 

For the sequence {𝜇𝑣,𝑟
(𝑛)
} the conditions of Theorem 3.1 are satisfied. Applying Theorem 

3.1 and the proof method in [1, Th. 1.9] we get 

 

𝐼1 = ‖∑𝜇𝑣,𝑟
(𝑛)

𝑛

𝑣=0

𝐴𝑣(𝑓
(𝛼), 𝑥) (1 −

𝑠𝑖𝑛
𝑣
𝑛

𝑣
𝑛

)

𝑟

‖

𝑀,𝜔

≼ ‖∑𝐴𝑣(𝑓
(𝛼), 𝑥)

𝑛

𝑣=0

(1 −
𝑠𝑖𝑛

𝑣
𝑛

𝑣
𝑛

)

𝑟

‖

𝑀,𝜔

 

≤ ‖(𝐼 − 𝜎1 𝑛⁄ )
𝑟
𝑓(𝛼)‖

𝑀,𝜔
= ‖∑(𝐼 − 𝜎1 𝑛⁄ )

[𝑟]
(𝐼 − 𝜎1 𝑛⁄ )

𝑟−[𝑟]
𝑛

𝑣=0

𝑓(𝛼)‖

𝑀,𝜔

 

≼ sup
0<ℎ𝑖,𝑡≤

1
𝑛

‖∏(𝐼 − 𝜎ℎ𝑖)

[𝑟]

𝑖=1

(𝐼 − 𝜎𝑡)
𝑟−[𝑟]𝑓(𝛼)‖

𝑀,𝜔

≼ Ω𝑀,𝜔
𝑟 (𝑓(𝛼),

1

𝑛
) 

 

This proves Theorem 2.1. 

 

Proof of Theorem 2.2  Let 2𝑚 ≤ ℎ < 2𝑚+1.  We have  

 

‖𝑅𝑛(𝑓
(𝛼), 𝜆) − 𝑓(𝛼)‖

𝑀,𝜔
= ‖∑𝜆𝑣

(𝑛)𝐴𝑣(𝑓
(𝛼), 𝑥) −

𝑛

𝑣=0

(𝑓(𝛼), 𝑥)‖

𝑀,𝜔
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≤ ‖∑(1 − 𝜆𝑣
(𝑛))𝐴𝑣(𝑓

(𝛼), 𝑥)

𝑛

𝑣=0

‖

𝑀,𝜔

+ ‖ ∑ 𝐴𝑣(𝑓
(𝛼), 𝑥)

∞

𝑣=𝑛+1

‖

𝑀,𝜔

 

≼ ‖∑(1 − 𝜆𝑣
(𝑛))𝐴𝑣(𝑓

(𝛼), 𝑥)

𝑛

𝑣=1

‖

𝑀,𝜔

+ 𝐸𝑛(𝑓
(𝛼))

𝑀,𝜔
. 

 

From Theorem 3.2, we get  

 

‖∑(1 − 𝜆𝑣
(𝑛))𝐴𝑣(𝑓

(𝛼), 𝑥)

𝑛

𝑣=1

‖

𝑀,𝜔

≤ 𝑐 ‖
‖(∑ | ∑ (1 − 𝜆𝑣

(𝑛))𝐴𝑣(𝑓
(𝛼), 𝑥)

2𝜇+1−1

𝑣=2𝜇

|

2
𝑚

𝜇=0

)

1
2

‖
‖

𝑀,𝜔

. 

 

Using the Abel transformation, we obtain  

 

𝜎𝑛,𝜇(𝑥): = ∑ (1 − 𝜆𝑣
(𝑛))𝐴𝑣(𝑓

(𝛼), 𝑥)

2𝜇+1−1

𝑣=2𝜇

= ∑ (𝑆𝑣(𝑓, 𝑥) − 𝑆2𝜇−1(𝑓, 𝑥))(𝜆𝑣+1
(𝑛) − 𝜆𝑣

(𝑛))

2𝜇+1−1

𝑣=2𝜇

 

+(𝑆2𝜇+1−1(𝑓, 𝑥) − 𝑆2𝜇−1(𝑓, 𝑥)) (1 − 𝜆2𝜇+1
(𝑛) ). 

 

From Minkowski's inequality and the monotonicity of the sequence of the best 

approximation numbers, we get 

 

‖𝜎𝑛,𝜇(𝑥)‖𝑀,𝜔 ≤ ∑ ‖𝑆𝑣(𝑓, 𝑥) − 𝑆2𝜇−1(𝑓, 𝑥)‖𝑀,𝜔|𝜆𝑣+1
(𝑛) − 𝜆𝑣

(𝑛)|

2𝜇+1−1

𝑣=2𝜇

+ ‖𝑆2𝜇+1−1(𝑓, 𝑥) − 𝑆2𝜇−1(𝑓, 𝑥)‖𝑀,𝜔 |1 − 𝜆2𝜇+1
(𝑛) | 

≤ 𝑐𝐸2𝜇−1(𝑓)𝑀,𝜔 ( ∑ |𝜆𝑣+1
(𝑛) − 𝜆𝑣

(𝑛)| +

2𝜇+1−1

𝑣=2𝜇

|1 − 𝜆
2𝜇+1
(𝑛) |) 

≤ 𝑐𝐸2𝜇−1(𝑓)𝑀,𝜔𝛿2𝜇,𝑛. 
 

On the other hand, we have [1] 

 

‖(∑ |𝜎𝑛,𝜇(𝑥)|
2𝑚

𝜇=0 )
1
2⁄
‖
𝑀,𝜔

≤ 𝑐(∑ ‖𝜎𝑛,𝜇(𝑥)‖
𝛾𝑚

𝜇=0 )
1 𝛾⁄

,                                              (4.1) 

 

where 𝛾 = 𝑚𝑖𝑛(2, 𝑝 + 𝜀) with a small positive number 𝜀. Therefore, we obtain the 

required inequality 

 



DOĞU A., YILDIRIR Y.E. 

861 

‖∑(1 − 𝜆𝑣
(𝑛))𝐴𝑣(𝑓

(𝛼), 𝑥)

𝑛

𝑣=0

‖

𝑀,𝜔

≤ 𝑐 (∑𝐸𝛾2𝜇−1(𝑓
(𝛼))

𝑀,𝜔
. 𝛿𝛾2𝜇,𝑛

𝑚

𝜇=0

)

1
𝛾⁄

. 

 

Proof of Theorem 2.3  Let 2𝑚 ≤ 𝑛 = [
1

1−𝑟
] < 2𝑚+1 and 𝜆𝜈(𝑟) = 𝑟

𝜈 , 0 ≤ 𝑟 < 1, 𝑣 =

0,1,2, … We have  

 

‖𝑅𝑟(𝑓
(𝛼), 𝜆) − 𝑓(𝛼)‖

𝑀,𝜔
= ‖∑(1 − 𝑟𝜈)𝐴𝑣(𝑓

(𝛼), 𝑥)

∞

𝑣=0

‖

𝑀,𝜔

 

‖ ∑ (1 − 𝑟𝜈)𝐴𝑣(𝑓
(𝛼), 𝑥)

2𝑚+1−1

𝑣=0

‖

𝑀,𝜔

+ ‖ ∑ (1 − 𝑟𝜈)𝐴𝑣(𝑓
(𝛼), 𝑥)

∞

𝑣=2𝑚+1−1

‖

𝑀,𝜔

=: 𝐼1 + 𝐼2. 

 

It is easily seen that the conditions of Theorem 3.1 are satisfied for the sequence 
{1 − 𝑟𝜈}. Then, by Theorem 3.1, [4, Lemma 2.1] and [1, Th.1.5] we have  

 

𝐼2 ≤ 𝑐 ‖ ∑ 𝐴𝑣(𝑓
(𝛼), 𝑥)

∞

𝑣=2𝑚+1

‖

𝑀,𝜔

≤ 𝑐𝐸𝑛(𝑓
(𝛼))

𝑀,𝜔
. 

 

From Theorem 3.2 and (4.1)  

 

𝐼1 ≤ ‖
‖(∑| ∑ (1 − 𝑟𝜇)𝐴𝜇(𝑓

(𝛼), 𝑥)

2𝑣+1−1

𝜇=2𝑣

|

2
𝑚

𝑣=0

)

1
2

‖
‖

𝑀,𝜔

 

     ≤ (∑ ‖∑ (1 − 𝑟𝜇)𝐴𝜇(𝑓
(𝛼), 𝑥)

2𝑣+1−1

𝜇=2𝑣
‖
𝑀,𝜔

𝛾

𝑚
𝑣=0 )

1

𝛾

.  

 

Applying Abel's transform and Theorem 3.1, we get 

 

‖ ∑ (1 − 𝑟𝜇)𝐴𝜇(𝑓
(𝛼), 𝑥)

2𝑣+1−1

𝜇=2𝑣

‖

𝑀,𝜔

 

≤ ∑ ‖𝑆𝜇(𝑓
(𝛼), 𝑥) − 𝑆2𝑣−1(𝑓

(𝛼), 𝑥)‖
𝑀,𝜔

|𝑟𝜇+1 − 𝑟𝜇|

2𝑣+1−1

𝜇=2𝑣

+ ‖𝑆2𝑣+1−1(𝑓
(𝛼), 𝑥) − 𝑆2𝑣−1(𝑓

(𝛼), 𝑥)‖
𝑀,𝜔

|1 − 𝑟2
𝑣+1
| 

≤ 𝑐𝐸2𝑣−1(𝑓
(𝛼))

𝑀,𝜔
2𝑣+1(1 − 𝑟). 

 

From the monotonicity of the best approximation, we have  
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‖ ∑ (1 − 𝑟𝜇)𝐴𝜇(𝑓
(𝛼), 𝑥)

2𝑣+1−1

𝜇=2𝑣

‖

𝑀,𝜔

𝛾

≤ 𝑐𝐸2𝑣−1
𝛾

(𝑓(𝛼))
𝑀,𝜔

2𝛾(𝑣+1)(1 − 𝑟)𝛾 

≤ 𝑐(1 − 𝑟)𝛾 ∑ 𝐸2𝑣−1
𝛾

(𝑓(𝛼))
𝑀,𝜔

.

2𝑣−1

𝜇=2𝑣−1

 

 

Then we get  

 

𝐼1 ≤ 𝑐 ((1 − 𝑟)𝛾‖𝐴1(𝑓
(𝛼), 𝑥)‖

𝑀,𝜔

𝛾
(1 − 𝑟)𝛾 ∑ 𝜇𝛾−1𝐸𝜇

𝛾
(𝑓(𝛼))

𝑀,𝜔

2𝑣−1

𝜇=2𝑣−1

)

1
𝛾

 

≤ 𝑐((1 − 𝑟)∑(𝜇 + 1)𝛾−1𝐸𝜇
𝛾
(𝑓(𝛼))

𝑀,𝜔

𝑛

𝜇=0

)

1
𝛾⁄

. 

 

Therefore, we have 

‖𝑅𝑟(𝑓
(𝛼), 𝜆) − 𝑓(𝛼)‖

𝑀,𝜔
≤ 𝑐(1 − 𝑟)(∑(𝜇 + 1)𝛾−1𝐸𝜇

𝛾
(𝑓(𝛼))

𝑀,𝜔

𝑛

𝜇=0

)

1
𝛾⁄

+ 𝐸𝑛(𝑓
(𝛼))𝑀,𝜔 

≤ 𝑐(1 − 𝑟) (∑ 𝑟𝜇(𝜇 + 1)𝛾−1𝐸𝜇
𝛾
(𝑓(𝛼))

𝑀,𝜔

𝑛
𝜇=0 )

1
𝛾⁄
. 

 

Proof of Theorem 2.4  Let 𝑚 ∈ ℕ, 2𝑚 ≤ ℎ < 2𝑚+1.  Under the conditions of the 

theorem, we have 𝑓 ∈ 𝒲𝑀,𝜔
(𝛼) (𝑻) [1]. We suppose that  

 

𝑆2𝑚+1𝑓
(𝛼): = ∑ 𝑐𝑘(𝑓

(𝛼))𝑒𝑖𝑘𝑥
2𝑚+1

𝑘=1

 

 

is the partial sum of Fourier series of the function 𝑓(𝛼). From the definition of the 

quantity 𝐷(𝑓(𝛼), 𝜇, ℎ,𝑀) and the properties of the norm we have  

 

𝐷(𝑓(𝛼), 𝜇, ℎ,𝑀) = ‖ ∫(𝐵ℎ𝑓
(𝛼))(𝑥, 𝑢)𝑑𝜇(𝑢)

∞

−∞

‖

𝑀,ω

 

≤ ‖ ∫[(𝐵ℎ𝑓
(𝛼))(𝑥, 𝑢) − (𝐵ℎ𝑆2𝑚+1𝑓

(𝛼))(𝑥, 𝑢)]𝑑𝜇

∞

−∞

(𝑢)‖

𝑀,ω

 

+‖ ∫(𝐵ℎ𝑆2𝑚+1𝑓
(𝛼))(𝑥, 𝑢)𝑑𝜇(𝑢)

∞

−∞

‖

𝑀,ω

. 

 

By the boundedness of the operator 𝐵ℎ and [1,Th.1.5], we obtain 
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‖ ∫[(𝐵ℎ𝑓
(𝛼))(𝑥, 𝑢) − (𝐵ℎ𝑆2𝑚+1𝑓

(𝛼))(𝑥, 𝑢)]𝑑𝜇

∞

−∞

(𝑢)‖

𝑀,ω

 

≤ 𝑐 ∫‖(𝐵ℎ𝑓
(𝛼))(𝑥, 𝑢) − (𝐵ℎ𝑆2𝑚+1𝑓

(𝛼))(𝑥, 𝑢)‖
𝑀,ω

𝑑𝜇(𝑢)

∞

−∞

 

= ∫ ‖(𝐵ℎ(𝑓
(𝛼) − 𝜎ℎ𝑆2𝑚+1𝑓

(𝛼))(𝑥, 𝑢))‖
𝑀,ω

𝑑𝜇(𝑢)

∞

−∞

 

≤ 𝑐 ∫‖𝑓(𝛼) − 𝑆2𝑚+1𝑓
(𝛼)‖

𝑀,ω
𝑑𝜇(𝑢)

∞

−∞

 

= ∫‖𝑓(𝛼) − 𝑆2𝑚+1𝑓
(𝛼)‖

𝑀,ω
𝑑𝜇(𝑢)

∞

−∞

 

= ∫ ‖𝑓(𝛼) − 𝑆
2𝑚+1
(𝛼) ‖

𝑀,ω
𝑑𝜇(𝑢)

∞

−∞

 

≤ 𝑐𝐸2𝑚+1(𝑓
(𝛼))

𝑀,𝜔
. 

 

So, we have 

 

𝐷(𝑓(𝛼), 𝜇, ℎ,𝑀) ≤ ‖ ∫(𝜎ℎ𝑆2𝑚+1𝑓
(𝛼))(𝑥, 𝑢)𝑑𝜇(𝑢)

∞

−∞

‖

𝑀,ω

+ 𝑐𝐸2𝑚+1(𝑓
(𝛼))

𝑀,𝜔
.    

 

Then we get  

 

∫(𝐵ℎ𝑆2𝑚+1𝑓
(𝛼))(𝑥, 𝑢)𝑑𝜇(𝑢)

∞

−∞

= ∫ (
1

2ℎ
∫𝑆2𝑚+1𝑓

(𝛼)(𝑥 + t𝑢)𝑑𝑡

ℎ

−ℎ

)𝑑𝜇(𝑢)

∞

−∞

 

                                         

= ∫ (
1

2ℎ
∫ ∑ 𝑐𝑟(𝑓

(𝛼))𝑒𝑖𝑟(𝑥+t𝑢)
2𝑚+1

𝑟=1

𝑑𝑡

ℎ

−ℎ

)𝑑𝜇(𝑢)

∞

−∞

 

  

= ∫ (
1

2ℎ
∑ 𝑐𝑟(𝑓

(𝛼))𝑒𝑖𝑟x
2𝑚+1

𝑟=1

∫𝑒𝑖𝑟tu𝑑𝑡

ℎ

−ℎ

)𝑑𝜇(𝑢)

∞

−∞

 

= ∑ 𝑐𝑟(𝑓
(𝛼))𝑒𝑖𝑟x ∫

𝑒𝑖𝑟hu − 𝑒−𝑖𝑟hu

2𝑖𝑟ℎ𝑢

∞

−∞

2𝑚+1

𝑟=1

 𝑑𝜇(𝑢) 

= ∑ 𝐴𝑟(𝑓
(𝛼), 𝑥)�̂�(𝑟ℎ)

2𝑚+1

𝑟=1

. 

 

Therefore, we have  
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𝐷(𝑓(𝛼), 𝜇, ℎ,𝑀) ≼ ‖∑ 𝐴𝑟(𝑓
(𝛼), 𝑥)�̂�(𝑟ℎ)

2𝑚+1

𝑟=1

‖

𝑀,ω

+ 𝐸2𝑚+1(𝑓
(𝛼))

𝑀,𝜔
.      

 

From Theorem 3.2 and [1], we obtain 

 

‖∑ 𝐴𝑟(𝑓
(𝛼), 𝑥)�̂�(𝑟ℎ)

2𝑚+1

𝑟=1

‖

𝑀,ω

≼ ‖
‖(∑|∑ 𝐴𝑙(𝑥)�̂�(𝑙ℎ)

2𝑟+1

𝑙=2𝑟

|

2
𝑚

𝑟=0

)

1
2

‖
‖

𝑀,ω

 

∶=  𝑐 ‖(∑∆𝑟,𝜇
2

𝑚

𝑟=0

)

1
2

‖

𝑀,ω

≼  𝑐 ‖∑(∆𝑟,𝜇
2 )

1
2

𝑚

𝑟=0

‖

𝑀,ω

 

 ‖(∑∆𝑟,𝜇
2

𝑚

𝑟=0

)

1
2

‖

𝑀,ω

≤ 𝑐∑(‖∆𝑟,𝜇
𝛾
‖)

𝑀,ω

1
𝛾⁄  

𝑚

𝑟=0

. 

 

Applying the Abel transform to ∆𝒓,𝝁, we get 

 

∆𝒓,𝝁= ∑[𝑆𝑙𝑓
(𝛼)(𝑥) − 𝑆2𝑟+1𝑓

(𝛼)(𝑥)](�̂�(𝑙ℎ) − �̂�((𝑙 + 1)ℎ)

2𝑟+1

𝑙=2𝑟

+ [𝑆2𝑟+1𝑓
(𝛼)(𝑥) − 𝑆2𝑟𝑓

(𝛼)(𝑥)]�̂�(2𝑟ℎ). 

 

From [1, Th. 1.5],  

 

‖∆𝒓,𝝁‖𝑴,𝝎 = ∑‖𝑆𝑙𝑓
(𝛼)(𝑥) − 𝑆2𝑟+1𝑓

(𝛼)(𝑥)‖
𝑀,𝜔

(�̂�(𝑙ℎ) − �̂�((𝑙 + 1)ℎ)

2𝑟+1

𝑙=2𝑟

+ ‖𝑆2𝑟+1𝑓
(𝛼)(𝑥) − 𝑆2𝑟𝑓

(𝛼)(𝑥)‖
𝑀,𝜔

�̂�(2𝑟ℎ) 

≤ 𝐸𝛾2𝑟(𝑓
(𝛼))

𝑀,𝜔
. 𝛿𝛾2𝑟,ℎ. 

 

Then  

 

‖ ∑ 𝐴𝑟(𝑓
(𝛼))𝑒𝑖𝑟x�̂�(𝑟ℎ)

2𝑚+1−1

𝑟=1

‖

𝑀,ω

≤ 𝑐 (∑𝐸𝛾2𝑟−1(𝑓
(𝛼))

𝑀,𝜔
. 𝛿𝛾2𝑟,ℎ

𝑚

𝑟=0

)

1
𝛾

. 

 

This completes the proof. 

 

Proof of Theorem 2.5  Under the conditions of the theorem, we have   𝑓 ∈ 𝒲𝑀,𝜔
(𝛼) (𝑻) 

[1].We have  
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𝐷(𝑓(𝛼), 𝜇1, ℎ,𝑀) ≤ ‖ ∫(𝐵ℎ𝑆2𝑚+1𝑓
(𝛼))(𝑥, 𝑢)𝑑𝜇(𝑢)

∞

−∞

‖

𝑀,ω

+ 𝐸2𝑚+1(𝑓
(𝛼))

𝑀,𝜔
 

 

From the the properties of the function and Theorem 3.1, we obtain  

 

‖ ∫(𝐵ℎ𝑆2𝑚+1𝑓
(𝛼))(𝑥, 𝑢)d𝜇1(𝑢)

∞

−∞

‖

𝑀,ω

= ‖∑ 𝑐𝑟(𝑓
(𝛼))𝑒𝑖𝑟𝑥𝜇1(𝑟ℎ)

2𝑚+1

𝑟=1

‖

𝑀,ω

 

= ‖∑ 𝑐𝑟(𝑓
(𝛼))𝑒𝑖𝑟𝑥𝜇2(𝑟ℎ)𝐹(𝑟ℎ)

2𝑚+1

𝑟=1

‖

𝑀,ω

 

≤ 𝑐 ‖∑ 𝑐𝑟(𝑓
(𝛼))𝑒𝑖𝑟𝑥𝜇2(𝑟ℎ)

2𝑚+1

𝑟=1

‖

𝑀,ω

= ‖ ∫(𝐵ℎ𝑆2𝑚+1𝑓
(𝛼))(𝑥, 𝑢)𝑑𝜇2(𝑢)

∞

−∞

‖

𝑀,ω

 

= ‖𝑆2𝑚+1 ∫(𝐵ℎ𝑓
(𝛼))(𝑥, 𝑢)𝑑𝜇2(𝑢)

∞

−∞

‖

𝑀,ω

≤ 𝒄‖ ∫(𝐵ℎ𝑓
(𝛼))(𝑥, 𝑢)𝑑𝜇2(𝑢)

∞

−∞

‖

𝑀,ω

. 

 

This completes the proof. 
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