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Abstract—Spectrum sensing is one of the means of utilizing
the scarce source of wireless spectrum efficiently. In this paper,
a convolutional neural network (CNN) model employing spectral
correlation function (SCF) which is an effective characterization
of cyclostationarity property, is proposed for wireless spectrum
sensing and signal identification. The proposed method classifies
wireless signals without a priori information and it is implemented
in two different settings entitled CASE1 and CASE2. In CASE1,
signals are jointly sensed and classified. In CASE2, sensing and
classification are conducted in a sequential manner. In contrary
to the classical spectrum sensing techniques, the proposed CNN
method does not require a statistical decision process and does not
need to know the distinct features of signals beforehand. Imple-
mentation of the method on the measured over-the-air real-world
signals in cellular bands indicates important performance gains
when compared to the signal classifying deep learning networks
available in the literature and against classical sensing methods.
Even though the implementation herein is over cellular signals, the
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proposed approach can be extended to the detection and classifica-
tion of any signal that exhibits cyclostationary features. Finally, the
measurement-based dataset which is utilized to validate the method
is shared for the purposes of reproduction of the results and further
research and development.

Index Terms—Deep learning, spectrum sensing,
cyclostationarity, signal classification, spectral correlation
function, convolutional neural networks.

I. INTRODUCTION

TODAY’S wireless communication systems have to bear
an unprecedented increase in data transmission volume.

It is essential for wireless communication networks to utilize
the limited source of spectrum as efficiently and effectively as
possible to meet the demand [1]. Furthermore, the efforts in-
cluding the deployment of small cells, utilizing millimeter wave
(mmWave) bands, effective spectrum usage algorithms, massive
multiple-input multiple-output (MIMO) systems [2], and cogni-
tive radio networks target the same goal. Cognitive radios aim to
attend this purpose by sharing the spectrum dynamically among
users; thus, spectrum sensing and signal identification became
major techniques for cognitive radio networks.Considering joint
communications, sensing, and localization demanded by 6G
and beyond, efficient spectrum allocation will be more crucial
for heterogeneous networks. For instance, 5G NR Release 16
introduces dynamic spectrum sharing which is novel method
enabling parallel operation of 5G and Long-Term Evolution
(LTE) in the same band [3]. Furthermore, it is envisioned that
radar and communications system will share the same frequency
band [4].

Moreover, today’s vehicular communications unprecedent-
edly evolve and develop. Thus, the spectrum band allocated
for vehicular networks gains increasing importance. Although
vehicular communications is separately building on dedicated
short-range communications (DSRC) and cellular communica-
tions, it is foreseen that numerous upcoming vehicular appli-
cations in dense vehicle networks will pave the way for joint
utilization of DSRC and cellular networks in the near future [5],
[6]. Recently, opportunistic utilization of spectrum for DSRC
and cellular communications has been proposed [7]. In this re-
gard, spectrum awareness and intelligent spectrum management
would be essential in vehicular networks.
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When spectrum sensing and signal identification techniques
are considered, it is seen that sensing techniques of energy
detection and matched filtering require a priori information such
as number of second order noise statistics, cyclic frequencies
and particular pulse shaping filter characteristics to operate.
Moreover, after processing of the received signals, a statistical
decision mechanism should be implemented to complete the
sensing process [8]. Such cumbersome process can hamper the
agile decision making requirements of 5G and beyond networks,
thus, classical sensing paradigm can not satisfy the requirements
of fast changing operation environment of contemporary and
future wireless communications networks. In this context, deep
learning (DL) has been proposed as a solution to the parameter
adaptation issues of classical techniques. This stems from the
known ability of DL techniques in extracting the intrinsic fea-
tures of given inputs through a convolutional process. The use of
DL based approaches also eliminates the need for a statistical de-
cision mechanism at the end of the identification process. Along
this line, the recent study shows that DL methods outperform
classical approaches in signal detection in the spectrum [9]. To
achieve the requirements for 5G and beyond wireless networks,
an intelligent radio design for spectrum sensing and signal
identification is required and such solution can be realized with
the help of machine learning (ML) algorithms [10] utilizing
features such cyclostationarity of signals [11].

A. Related Works

When the literature on the implementation of artificial intelli-
gence techniques for spectrum sensing and signal identification
purposes are considered, it is initially seen that CNNs are trained
with high-order statistics of single carrier signals for modula-
tion classification [12]. The CNN classifier is used for mod-
ulation and interference identification for industrial scientific
medical (ISM) bands by utilizing fast Fourier transform (FFT),
amplitude-phase representation (AP) and in-phase/quadrature
(I/Q) features for training [13]. Moreover, a covariance matrix
based CNN has been proposed for spectrum sensing in [14].
This approach utilizes sample covariance matrix as the input of
CNN to further improve spectrum sensing performance. In [15],
covariance matrix based transfer learning is also proposed for
signal detection for ambient backscatter communications. Also,
CNNs have been utilized for spectrum sensing applications
underα-stable noise and for real-time hardware platforms in [16]
and [17], respectively. Another study [18] focused on the proto-
col classification in ISM band by utilizing fully connected neural
networks. As another example of the application of DL to signal
classification, long short term memory (LSTM) is deployed
for modulation classification and identification of digital video
broadcast (DVB), Tetra, LTE, Global System for Mobile com-
munications (GSM), wide-band FM (WFM) signals by using
AP and FFT magnitude for training [19]. The performance
of the proposed model is high, however, it employs synthetic
data generated from MATLAB. In the real channels, there are
numerous phenomenons, which further complicate the signal
characteristics.

On the other hand, cyclostationarity signal analysis has been
explored for modulation classification, parameter estimation and
spectrum sensing for more than 20 years. In addition to being
an established method for spectrum sensing in cognitive radio
domain, cyclostationary features detection (CFD) is also utilized
to distinguish generic modulations such as M-PSK, M-FSK, and
M-QAM [11], [20]. When the radio access technology (RAT)
identification [21] is considered, second order cyclostationarity
is employed for classification of LTE and GSM signals [22].
Later, a tree-based classification approach is proposed to identify
GSM, cdma2000, universal mobile telecommunications system
(UMTS) and LTE signals [23].

B. The Contributions

1) Novelty in Terms of Numerical Studies: In terms of per-
formance analysis, first, a comparative analysis is conducted
and superiority of SCF over the features of I/Q, AP and FFT
is shown for the purpose of training of DL networks. Second,
comparison with the existing DL methods such as convolutional
long short term memory fully connected deep neural network
(CLDNN) [24], LSTM [19], DenseNet [25], ResNet [12] are
given in terms of accuracy, memory consumption and com-
putational complexity. Third, it is shown that the proposed
method outperforms support vector machines (SVMs) trained
with SCF, which is our previous study. Fourth, the performance
of the proposed method is compared with the classical spectrum
sensing technique of CFD, which requires the cyclic frequen-
cies as a priori information. The identification results indicate
important performance improvements over the aforementioned
techniques.

2) Methodological Novelty: CFD depends on extracting the
underlying features using likelihood-based techniques utiliz-
ing statistical decision mechanisms and for CFD to operate
under the dynamically changing communication medium, an
additional mechanism to adaptively adjust decision parameters
such as thresholds and the number samples is required [26].
On the other hand, even though employment of DL techniques
for the purposes of spectrum sensing and signal identification
implies considerable advantages in terms of performance and
complexity, utilization of FFT, AP and I/Q as input features to
the intelligent networks do not lead stable and dependable results
due to the rapidly and significantly changing wireless com-
munications medium between the nodes. Therefore, this study
proposes application of SCF as input feature to CNNs for blind
wireless signal identification. The problems of spectrum sensing
and signal identification are framed into two particular contexts
which utilize a novel methodology based on CNN and SCF of
wireless signals without bi-frequency mapping. Therefore, the
proposed method can be employed either to decide whether the
signal is present or not in the spectrum or to distinguish signals
from each other. Sensing and identification performance of the
method is tested and validated utilizing real-life over-the-air
signal measurements of GSM, UMTS, and LTE signals.

The proposed method approaches to the problems of sensing
and identification from the aspects of two cases; in CASE1, the
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designed CNN model is fed directly with the SCFs of mea-
surements of GSM, UMTS, LTE along with SCF of spectrum
which is only comprised of noise. Sensing and classification
are executed jointly for CASE1. On the other hand in CASE2,
a two-step approach is adopted; first, as a spectrum sensing
method to measure the spectrum occupancy is conducted and
this stage is followed by a signal classification procedure.

3) Novelty in Terms of Experimental Activities: Focusing on
the valuable information in the dataset is an important met-
ric for the proposed method; thus, it is denoted that utilizing
only the meaningful part of the input matrices improves the
classification performance along with alleviation in training
time and complexity. On the other hand, the general dataset,
which has been developed from measurements taken through
a comprehensive measurement campaign conducted in different
locations and frequency bands, is shared publicly in [27]. There-
fore, the measurement-based dataset is open to researchers as a
comprehensive resource in the development and validation of
their work.

4) Applicability for Future Research Problems: Even though
in this work the scope of implementation is focused on cellular
signals, the introduced identification system can be directly
used for detection and classification of any signal that exhibit
cyclostationary features. All analyses are based on the real-world
measurements taken during a measurement campaign conducted
at different locations with varying environmental conditions
such as channel fading statistics and signal-to-noise ratio (SNR)
levels. Finally, the measurement data that this work is experi-
mented on is also shared for reproducibility of this work and
to support future research and development activities in this
domain.

5) Tutorial on DL-Based Cognitive Communications: Be-
sides all the contributions above, this study provides a compre-
hensive tutorial for practical applications of deep learning-based
cognitive communications. In this study, each step from feature
extraction to points to be considered in the training process
is handled by considering hardware constraints and optional
approaches are discussed. For this reason, this study acts as a
guide for designers as well as researchers.

C. Organization of the Paper

The rest of the paper is structured as follows. Background
information on the system model, cyclostationary analysis and
CNNs is presented in Section II. The problem statement is
given in Section III. The proposed CNN model is described in
Section IV. The details of the measurement setup and dataset
utilized in this study are given in Section V. Section VI presents
measurement results and details the classification performance
of the proposed method. The concluding remarks are provided
in Section VII.

II. BACKGROUND

Assuming that received signal is down converted to baseband
before further processing, first the complex baseband equivalent
of the received signal, r(t) should be defined. When the presence
of fading environment with thermal noise, received signal can

be given as

r(t) = ρ(t) ∗ x(t) + ω(t), (1)

where ω(t) denotes the complex additive white Gaussian noise
(AWGN) with CN (0, σ2

N ) in the form of ω(t) = ωI(t) +
jωQ(t) as both ωI(t) and ωQ(t) being N (0, σ2

N/2) and j =√−1; the complex baseband equivalent of the transmitted sig-
nals is denoted as x(t); and ρ(t) stands for the impulse response
for the time-invariant wireless channel because of extremely
short observation time for a signal.

Depending on the idle or busy state of the mobile propaga-
tion channel in the radio frequency (RF) spectrum, the signal
detection process of deep learning methods can be modelled as
a binary hypothesis test

r(t) =

{
ρ(t)x(t) + ω(t), H1

ω(t), H0.
(2)

H0 and H1 hypotheses stand for the presence of noise only
and the unknown signal, respectively. Therefore, the problem
statement can be stated as identification of the presence of the
unknown signal, x(t), and classification of the x(t).

A. Cyclostationarity

Cyclostationary signal processing leads to extracting hidden
periodicities in a received signal, r(t). Since these periodicities
(e.g., symbol periods, spreading codes, and guard intervals)
exhibit unique characteristics for different signals, they provide
the necessary information for identification. Thus, the unknown
signalsx(t) can be identified by using cyclostationary features to
obtain the statistical characteristics of r(t) in the presence ofω(t)
and multipath fading without a priori information. A nonlinear
transformation, second-order cyclostationarity of a signal can
be expressed as

sτ (t) = E {r(t+ τ/2)r∗(t− τ/2)} , (3)

where sτ (t) is the autocorrelation of r(t). Assuming that the
autocorrelation function is periodic with T0 for second-order
cyclostationary signals, a Fourier series expansion of sτ (t) is
given as

Rα
r (τ) =

1
T0

∫ T0/2

−T0/2
sτ (t)e

−j2παtdt, (4)

where Rα
r (τ) is the cyclic autocorrelation function (CAF) and

α values denote the cyclic frequencies.
The Fourier transform of the CAF for a fixed α is given with

the cyclic Wiener relation [11]

Sr(f) =

∫ T/2

−T/2
Rα

r (τ) e−j2πfτdτ, (5)

where Sr(f) is called as SCF which is equal to the power spectral
density (PSD) when α is zero.

The computational complexity of calculating SCF is relatively
high. However, this complexity can be decreased by using the
FAM based on time smoothing via FFT [28]. FAM estimates the
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Fig. 1. Fast Fourier transform accumulation method (FAM) based SCF estimates of cellular signals in bi-frequency plane. It is easily observed that the signals
show different cyclic characteristics. The noise does not show cyclic characteristics as SCF of noise gives only peak at the center of bi-frequency plane where the
cyclic frequency is zero.

SCF as

SrT =
∑
k

RT (kL, f)R
∗
T (kL, f)gc(n− k)e−i2πkq/P , (6)

where RT (n, f) denotes the complex demodulates which is the
N ′-point FFT of r(n) passed through a Hamming window and
can be computed by

RT (n, f) =

N ′/2∑
k=−N ′/2

a(k)r(n− k)e−i2πf(n−k)Ts , (7)

where a(n) and gc(n) are both data tapering windows. The sym-
bols N ′, Ts, and L denote the channelization length, sampling
period, and sample size of hopping blocks, respectively. The
ratio between the number of total samples and L is employed
as the length of second FFT, whose length is denoted as P .
The FAM has six implementation steps. These steps are re-
spectively channelization, windowing, N ′-point FFT, complex
multiplication, P -point FFT and bi-frequency mapping. In the
study, the unit rectangle and Hamming windows are employed
as gc(n) and a(n), respectively. Fig. 1 illustrates SCFs results in
bi-frequency plane, which are estimated by FAM algorithm for
GSM, UMTS, and LTE along with the noise. Consequently, the
input matrix, XSCF

k , to be fed into classifier model is given as

XSCF
k = |SrT

(nL, f)|. (8)

As seen from Fig. 1, the SCF of noise creates a peak at DC
frequency because of the lack of cyclostationary characteristics
in AWGN signal. Due to midambles and bursty structure of GSM
frames, SCF generates unique peaks as depicted in Fig. 1(b).
SCF of UMTS creates specific peaks at 3.84 MHz owing to the
fact that the spreading factor of wideband code division multiple
access (WCDMA) is 3.84 Mcps. Since the frame duration of LTE
signals is 10 ms, the peaks at 100 Hz as given in Fig. 1(d).

B. Amplitude-Phase

The amplitude and phase values of time-domain I/Q data can
be used to establish a real-valued classification feature matrix,
XAP

k . This feature matrix is composed of the amplitude and
phase vectors of the received signal samples. So,XAP

k is defined
as

XAP
k =

[
xT
A

xT
φ

]
, (9)

where xA = (rq
2 + ri

2)
1
2 and xφ = arctan(

rq
ri
) denote the am-

plitude and phase vectors, respectively.

C. Fast Fourier Transform

The characteristics of signals in frequency domain can be
employed as discriminating classification features. The FFT of
the received signal is used to obtain a real-valued classification
feature matrix XFFT

k as

f = F(r), XFFT
k =

[
fTre
fTim

]
, (10)

where F(·) stands for the FFT of the received signals; fre and
fim are real and imaginary parts of f , respectively.

D. The Convolutional Neural Networks

CNN is a class of deep neural networks which is mainly
employed in image classification and recognition. CNN process
inputs like a visual system in human. In other words, it extracts
features in an input rather than fitting data [29]. In this study,
we utilize the input matrices which resemble image consisting
of features in a specific positions as seen in Fig. 1. Still, it
has been recently extended to several application areas. CNNs
have two stages: feature extraction and classification. In feature
extraction, a convolutional layer is followed by a pooling layer.
In the convolution layer, the feature matrix is convolved with
different filters to obtain convolved feature map as follows

h[i, j] =
m∑
p=1

n∑
l=1

wp,lXk[i+ p− 1, j + l − 1], (11)

where wp,l is the element at p-th row and l-th column of the
m× n filter matrix, and Xk[·, ·] denotes the elements of feature
matrix convolved by wp,l. The convolution layer is followed
by the pooling layer to reduce computational complexity and
training time, and control over-fitting due to the fact that pooling
layer makes the activation less sensitive to feature locations [30].
The u× v maximum pooling operation is described as

g[i, j] = max {h[i+ a− 1, j + b− 1]} , (12)

where 1 ≤ a ≤ u and 1 ≤ b ≤ v. The output of the pooling
layer is a 3-D tensor. This output is then reshaped into a 1-D
vector. This vector is fed to the dense (fully-connected) layers
for the final classification decision.
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Fig. 2. Two different approaches for the sensing and classification of signals. In
CASE1, signal sensing and signal classification are jointly conducted. However,
CASE2 firstly sense signal in the spectrum, then classify.

III. PROBLEM STATEMENT

The dynamic communications environment of next genera-
tion wireless networks require fast, robust and adaptive sensing
and identification of the multi-dimensional communications
medium to utilize the resources quickly and efficiently [8]. In
this context, spectrum sensing and signal identification becomes
important means of achieving effective resource utilization. To
that end, we approach the problems of sensing and identification
via DL from two aspects:
CASE1: In this case, the designed CNN classifier is trained

with all possible classes, in this case GSM, UMTS, LTE and
empty spectrum which can be referred to as AWGN only. For
each signal the cyclic spectrum is constructed based on the
procedures described in Section II-A. The cyclic spectrum is
then fed to the CNN classifier, which is trained with four possible
inputs beforehand. Finally, the classification is made.
CASE2: In this case a two-stage approach is adopted; at the

first stage a CNN detector (the same CNN model defined is
employed for both detection and classification for the sake of
simplicity) is utilized to decide whether a signal exists in the
given band or not by training the CNN by two classes, first
comprised of GSM, UMTS, and LTE signals and second part
with AWGN only. Thus, in the first stage a decision is made
about whether a signal exists in the spectrum or not as in the
case of classical spectrum sensing. If the decision is made that
there is an information bearing signal in the given band, second
stage is activated utilizing a CNN classifier, which is trained in
our case with three classes (i.e., GSM, UMTS, and LTE) and
finally a decision is made for the class of the signal occupying
the spectrum.

Please note that the classification refers to identification of
the signals, and at the detection part of the approach H1 and
H0 refers to the existence and non-existence of a signal over
the spectrum based on binary hypothesis testing. Both CASE1
and CASE2 are illustrated in Fig. 2. By evoking the second
strategy, it is possible to differentiate spectrum occupancy and
then determine whatever the signal is. By doing so, the system
focuses on signal existence rather than its type at low SNR
levels, especially. Moreover, the classification accuracy can be
improved by utilizing the intermediary noise cancellation step
between sensing and classification parts. It should be noted

that this study does not employ an external noise cancellation
method.

As known, some operation fields can be under impact of high
noise and interference. In that case, direct signal identification
cannot be accurate due to distortion in feature vectors. CASE2 is
designed to disjointly sense and classify signals in the spectrum.
However, CASE1 provides joint sensing and identification for
signals in the spectrum.

If the signals to be detected and identified are in the low SNR
region, using CASE2 increases its performance at the expense
of increasing computational complexity and memory usage. On
the other hand,CASE1 provides sensing and signal classification
with low complexity and moderate performance.

Firstly, we can define the accuracy for CASE1, PCASE1 as:

PCASE1 =

3∑
k=0

P (χ̂k|χk)P (χk), (13)

where χk denotes the label array of the transmitted signals and
k represents the label of the classes AWGN, GSM, UMTS, and
LTE, respectively. χ̂k is array for the predicted classes of the
received signals. In a short, PCASE1 stands for the accuracy of
four-classes classification problem. For CASE2, it is required
to define two independent accuracy functions: the sensing accu-
racy, P S

CASE2 and the classification accuracy, P C
CASE2, which are

defined as

P S
CASE2 = P (χ̂S = 1|H1) + P (χ̂S = 0|H0), (14)

P C
CASE2 =

3∑
k=1

P (χ̂k|χk, H1)P (χk). (15)

χ̂S is the prediction ofχS regarding to the presence of a signal in
the spectrum. χk stands for the predictions for the classification
part of CASE2. χS is defined for the transmitted signal as:

χS =

{
0, k = 0,

1, k = 1, 2, 3.
(16)

The overall accuracy for CASE2 can be introduced in terms of
P S
CASE2 and P C

CASE2 by

PCASE2 = P (χ̂S = 1|H1)P
C
CASE2. (17)

IV. THE PROPOSED CNN MODEL

As indicated in Section III, the proposed method relies on a
CNN model, which is designed for the problem defined in this
study. Design and implementation of CNN for classification of
wireless mobile communication signals is conducted via an open
source machine learning library, Keras [31]. The proposed CNN
model consists of three convolution and three pooling layers
sequentially. The convolution layers have respectively 64, 128,
and 64 filters. The network is terminated by two fully connected
layers. First hidden layer includes 256 neurons. Second hidden
layer consists of 4 and 3 neurons for CASE1 and CASE2,
respectively. The leaky rectified linear unit (ReLU) activation
function with an alpha value 0.1 is used in each convolution
layer to extract discriminating features. Leaky ReLU is selected
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TABLE I
THE PROPOSED CNN LAYOUT

Fig. 3. The proposed CNN model consists of three convolutional layers and
two dense layers with Adam optimizer with learning rate of 10−5.

instead of ReLU. Unlike ReLU, leaky ReLU maps larger neg-
ative values to smaller ones by a mapping line with a small
slope. In each convolution layer, 3 × 3 filters are used. 2 × 2
max pooling is used to reduce the dimension and training time.
A fully connected layer is formed by 256 neurons and Leaky
ReLU activation function. Following the fully connected layers,
the probabilities for each class are computed by the softmax
activation function. In addition, the adaptive moment estimation
(ADAM) optimizer is utilized when determining the model
parameters. In the training phase, early stopping is employed
to prevent the model from over-fitting. The patience is chosen
as 10 epochs for early stopping function and validation loss is
monitored during the training. If the validation loss converges a
level and remain at this level during 10 epochs, the training is
terminated and the weights at the end of training are used in the
test. The implementation layout for the proposed CNN model is
given in Table I. The input matrices, XAP

k , XFFT
k , and XSCF

k

are used at the beginning of the proposed model by convolving
with filters. The overall block diagram for the proposed CNN
model is depicted in Fig. 3.

When the motivation behind designing such a CNN model
is considered, it should be noted firstly that the information
about changes in the local regions of the mapped output is
extracted by using 3 × 3 × 64 filters in the first convolution
layer. In this problem, because the SCF creates local differences
in frequency and cyclic frequency regions, the smaller filter size
is preferred to catch peaks in the feature matrices. Thus, local
differences are taken into account along the layers. After the first
layer determines the cyclic characteristics of all local terms as a
general process, the second layer examines the properties such as

location and size related to these characteristics. Here, it is aimed
to deal with cyclic features in detail by increasing the number
of filters to 128. In the last layer, all properties are converted
to an average of all information gathered and eventually sent
to the decisive layer which is dense layer. For this reason, the
number of filters in the last layer should be chosen so that
sufficient information is obtained without overfitting. Therefore,
the number of filters is selected as 64 in the last layer. It is
customary to quantify the performance of a classifier model in
terms of the precision (Π), recall (Ψ), and F1-score performance
metrics. The precision metric quantifies how much positive
results are actually positive, the recall provides information on
how much true positives are identified correctly as positive, and
F1-score gives an overall measure for the accuracy of a classifier
model since it is the harmonic average of precision and recall.
These metrics are given as

Π =
ξ

ξ + υ
, Ψ =

ξ

ξ + μ
, F1-score = 2 × Π×Ψ

Π+Ψ
, (18)

where ξ, υ, and μ denote the numbers of true positive, false
positive, and false negative, respectively.

V. MEASUREMENT METHODOLOGY AND DATASET

GENERATION

The dataset to test and evaluate the proposed method is
developed from the measurements taken through a measure-
ment campaign conducted at different locations and frequency
bands. In order to make the model robust against environmental
changes, measurements have been conducted in different loca-
tions as illustrated in Fig. 5. The locations of transmitters and
measurement points can be seen in Fig. 5. It can be seen that
the signals propagate through the urban area, and then reach the
receivers in sub-urban area. The measurement focuses on 800,
900, 1800, and 2100 MHz frequency bands that are allocated
for cellular communications. Rohde Schwarz FSW26 spectrum
analyzer and a set of Yagi-Uda antennas are employed at the
receiver. The measurements are unified as follows: for each
signal observed in the spectrum, 16384 I/Q samples are taken.
Measurements are conducted at 15 different SNR levels. Each
level consists of the same number of signals which is 4000.
Therefore, 60000 signals in total are recorded and included in
the dataset. Sample power spectra of these signal types, obtained
with the Welch’s method, are shown in Fig. 4. When the proposed
method is considered, the dataset is split into test and train data
with the proportion of 0.4 and 0.6, respectively.

To better understand the effects of wireless communications
channels over the received signals, first, amplitude distributions
of four different recordings of all three signals are given in
Fig. 6. Fig. 6 indicates different power and amplitude levels.
The distribution of the received power changes considerably
since the measurements are taken at different locations, times
and frequency bands. This result implies Rayleigh-like fading
behavior stemming from the amplitude distributions of received
signals. This is an expected result when the measurement area
and the locations of transmitters and receivers are considered.
Eventually the received power of the signal is obviously affected
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Fig. 4. This snapshot of spectrum denotes a sample from the dataset comprised of cellular signals recorded during a comprehensive measurement campaign.
900 MHz band is represented here but the measurements are not limited to that band; thus, cover all cellular bands.

Fig. 5. An overview of the measurement area. The transmitters are located in
the urban area, but the receivers are in a sub-urban area.

by the shadowing, multipath fading and path loss as depicted in
Fig. 6.

For comparative analysis, we need to blindly find SNR levels
of received signals. For this purpose, we used a subspace-based
SNR estimation algorithm when we created the dataset. The
algorithm finds the noise floor first. Then, it finds the total power
of a received noisy signal. Last, the SNR regarding the received
signal is estimated. As the algorithm works by finding the noise
floor, it cannot show accurate performance if noise power is
higher than or equal to the signal power. Therefore the dataset
includes only signals whose SNR levels are higher than 0 dB.
The SNR estimation method allows fair comparison without any
dependency on the number of symbols.

The dataset is shared in [27] in the format of SCF. The dataset
covers 60000 SCF matrices with the dimensions of 8193 × 16
corresponding to received I/Q samples of 16384 for each signal.

VI. CLASSIFICATION PERFORMANCE ANALYSIS

We evaluate the performance of the proposed classification
model over the comprehensive dataset described in Section V.
Therefore, the dataset is composed of GSM, WCDMA for
UMTS and LTE signals which are recorded over-the-air at
different locations with unique conditions in terms of the number
of channel taps, and fading, again as noted in Section V. Training
and test sets contain 9000 and 6000 signals for each waveform.
The I/Q signal length is 16384. CNN is trained and tested on
the graphics processing unit (GPU) server equipped with four
NVIDIA Tesla V100 GPUs.

First, we focus on the results for CASE1. As stated before,
CASE1 refers to four-classes classification problem. To inves-
tigate the problem in a basic and fundamental way, we utilized
a baseline method. First, Naive Bayes classifier is employed
for this task. Fig. 7 denotes comparative test accuracy. The
baseline method cannot perform over 75% accuracy but, the test
accuracy of CNN model exceeds 90% at 11 dB SNR. It takes
a maximum accuracy value of 92% at 15 dB. The confusion
matrices related to CASE1 are depicted in Fig. 8. Due to the
low SNR values, the model mostly can not accurately classify
the signals and identifies the signal as Noise. This case can be
observed in Fig. 8(a). Therefore, dividing the problem into two
parts becomes a viable alternative: first sense, then classify. In
this case, we analyse both CNN detector and CNN classifier (see
Fig. 2). For the sensing part of the architecture, noise signals are
labeled as 0 and the rest of the set is labeled as 1. The detection
results are plotted again in Fig. 7 as P S

CASE2. The detection
accuracy follows 96% at almost all SNR values.

Following the steps above, assuming that a signal is present in
the spectrum at the output of CNN detector of CASE2 in Fig. 2,
the performance of the CNN classifier can be investigated. This
stage is labeled as P C

CASE2 in Fig. 7 and it is observed that the
classification accuracy exceeds 90% at 3 dB SNR. It gives the
best performance, 98.5%, at 9 dB and it is remained stable until
15 dB. As given in (17), PCASE2 shows the cascaded sensing
and classification performance under the presence of a signal in
the spectrum. PCASE2 shows a better performance than PCASE1,
which denotes the joint sensing and classification performance.
The Fig. 9(a) depicts the confusion matrices related to CNN
classifier ofCASE2 and implies that even at low SNR regime, the
classifier can identify GSM signals with high accuracy; however,
overall precision of the classifier is low i.e., in contrary to GSM
signals, the classifier has difficulty in recognition of UMTS and
LTE signals in low SNR regime. But the accuracy and precision
of the classifier enhance as SNR increases in Fig. 9(b) and (c).
This phenomena is observed due to the dominance of charac-
teristics in feature matrices which follow Gaussian distribution.
As known, GSM is associated with Gaussian minimum shift
keying (GMSK); therefore, GSM signals inherently show char-
acteristics defined by Gaussian distribution in the case of high
SNR. Decreasing in SNR leverages Gaussian characteristics in
the received signal because of AWGN. That is to say, UMTS
and LTE signals with lower SNR values become denoting Gaus-
sian characteristics; thus, the model is prone to learn Gaussian
characteristics to decrease its loss function. When the trained
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Fig. 6. Sample PDFs of the amplitude of received signals in the dataset. The example PDFs show the different channel and received power characteristics.

Fig. 7. Accuracy values with respect to SNR level of the received signals for
both cases.

model is tested, it is expected that the model can identify the
signals which have dominant Gaussian characteristics. As a
result, the model can identify GSM signals, which inherently
denote Gaussian attributes, in lower SNR regime where UMTS
and LTE signals lose their unique features. This statement shows
parallelism with the results given in CASE1 in Fig. 8(a). The
model accurately identifies AWGN at lower SNR regime as
given in Fig. 8(a).

The results for CASE2 are given in parts to this point. Now,
we can examine the overall performance of CASE2. Obviously,
there is a loss of performance due to some misdetection in the
sensing phase. Both the detection rate in the sensing stage and
the accuracy in the classification stage are high at 3 dB and
thereafter, so overall performance does not suffer a significant
loss. As shown in Fig. 7, the overall performance of CASE2 is

far superior to that of CASE1. Especially at low SNR levels,
the signals remaining after first detecting and separating noise
from the signal set by the CNN detector can be classified with
much better performance. In this way, the performance is higher
in CASE2. However, it should be noted that CASE2 is more
costly than CASE1 in terms of training time and the number of
models. Obviously, CASE2 can be predicted to perform better
than CASE1 in the presence of a jammers exhibiting Gaussian
characteristics or other interfering signals.

Sensing performance can be considered that it is slightly
lower than conventional spectrum sensing methods like energy
detector and matched filter. However, it should be noted that
this study employs real–world data rather than simulation or
synthetic data. For example, energy detectors can sense a signal
in a spectrum with optimal performance; however, it needs
to know noise variance. But even with a slight error on esti-
mating the noise variance, the sensing performance seriously
decreases. Moreover, as the power of spread spectrum signals
(e.g. WCDMA in UMTS) is spreaded in a wide band, its power
is very close to the noise floor. By taking into this account,
in a fading environment, it can be said that energy detector
cannot perform a satisfactory detection rate for spread spectrum
signals as stated in [32]. It is worth noting that our measurements
follow Rayleigh distribution as seen in Fig. 6. On the other hand,
matched filters are waveform-specific solution and they require
the perfect knowledge for signals.

A. Investigation for the Impact of Different Features

In this section, we compare the performance of other features
of I/Q, AP, and FFT which are frequently employed for sensing
purposes with SCF. The features are used as detailed in Sec-
tion II. The results of this test are presented in Table II. Unlike the
modulation classification studies [12], [33], I/Q cannot provide a
meaningful input for the model due to the severe fading effect on
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Fig. 8. Confusion matrices for CASE1 at SNR levels of (a) 1 dB, (b) 5 dB, and (c) 10 dB. It should be noticed that the model does not randomly choose only one
signal at low SNR level.

Fig. 9. Confusion matrices for the classification part of CASE2 at SNR levels of (a) 1 dB, (b) 5 dB, and (c) 10 dB. It should be noticed that the model does not
randomly choose only one signal at low SNR level.

the phase of signal. The histograms of phase imply that the signal
phase is corrupted and the information on the phase is lost. That
is why I/Q shows poor performance. The average performances
also indicate that SCF outperforms I/Q, AP, and FFT for all SNR
levels. Assuming that these two are used along with I/Q as the
main features for training, these results show significant gains
for real-world signals especially above 5 dB SNR level. It is
observed that AP performs better than FFT. The average training
time per epoch is approximately 60 s for SCF feature where both
FFT and AP take 7.5 s per epoch; however, both FFT and AP
cannot show an acceptable classification performance, PC

CASE2.
Although the cost of computing both features is far behind the
SCF, they are far from delivering the desired performance. To
visualize the vectors in input space, we employ the t-distributed
stochastic neighbor embedding (t-SNE) algorithm. Although
originally I/Q samples are not linearly separable, SCF clusters
the vectors in the space and allows almost linear separation as
depicted in Fig. 10. The analysis based on t-SNE results show
that SCF better separates signal vectors in space. The results of
this study are in line with the previous analysis [34].

Fig. 10. Two-dimensional demonstration of the features by the t-SNE algo-
rithm. This illustration shows that in contrary to the other features, SCF can
separately cluster real-world signals in space successfully.
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TABLE II
CLASSIFICATION PERFORMANCE METRICS FOR THE PROPOSED CNN MODEL

WITH SCF, AP, AND FFT FEATURES FOR CASE2

Another important factor in feature selection is computational
complexity as well. It can generally say that the feature with
high computational complexity can achieve better accuracy. In

TABLE III
PERFORMANCE COMPARISON BETWEEN THE EXISTING DL NETWORKS AND

THE PROPOSED SYSTEM FOR THE CLASSIFICATION STAGE OF CASE2 AT SNR
VALUE OF 15 DB

some applications, the hardware has very limited computation
capacity. The designers should notice the trade-off between com-
plexity and accuracy. It is worth saying that the feature selection
criteria strictly depends on the application and its hardware.
In this study, we provide a tutorial for deep learning-based
spectrum sensing and signal classification systems. For example,
SCF provides the highest accuracy among features; whereas, its
complexity is O(N 2) [28]. The computational complexity of
FFT can be given as O(N log2(N)). Although FFT is more
complex than AP, it cannot perform as high as AP. As a result, it
can be said that SCF can be preferred in the aspect of complexity
and accuracy trade-off.

B. Comparison With Existing Deep Learning Networks

The existing DL networks are employed to classify the cellular
communication signals. We utilize CLDNN [24] and LSTM
[35] models. These models are originally used in modulation
classification. Without any change in the models, input matrix,
and input vector as proposed in the papers are adopted in the
study. CLDNN takes a 2 × 128 matrix which is composed of
amplitude and phase values for each I/Q sample. On the other
hand, LSTM model utilizes a vector reshaped version of the
matrix used in CLDNN. Therefore, the length of the vector
is 256. Its first half includes in-phase components while the
rest of the vector is quadrature components. Other details are
found in [24], [35]. The precision, recall, and F1-score are given
in Table III. It shows that CLDNN and LSTM decide that the
received signal is UMTS whatever it actually is. Even though
LSTM and CLDNN can be trained in a short time by using I/Q
vector and matrix, employing I/Q vector and matrix give poor
classification performance.

C. Comparison With SVM

In our previous work, we employed SVMs to identify real-
world signals [34]. Even though utilization of SCF in SVM
provides good performance, training of SVM should be con-
ducted for each SNR level separately i.e., at the end of the
training, the more SNR values in the dataset, the more models
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Fig. 11. The classification performance comparison between SVM in [34] and
the proposed CNN structure for P C

CASE2.

should be created. The real-world utilization of SVM requires an
SNR estimator and loading of all pre-trained models to memory
during operation; thus, reducing the applicability of the method
and making improvements a necessity. As seen in Fig. 11, the
CNN-based classifier shows a superior performance compared
to SVM-based classifier of [34], under the conditions of the
classification part of CASE2. To this end, while CNN-based
classifier employs a less costly feature due to elimination of
mapping of bi-frequency spectrum, it still performs with higher
accuracy. Therefore, producing a model independent of the SNR
is an advantage of the proposed CNN based method since the
training set contains an equal number of signals from each SNR.
As a result, a single model would be adequate for classification
in a large SNR range at the test stage.

D. Comparison With CFD

Besides signal classification, the proposed CNN model can
be used for spectrum sensing. We investigated the sensing
performance of the model by training a CNN-based spectrum
occupancy detector trained over 600 pure noise signals and
600 noisy WCDMA signals for each SNR value. Then, the
model is tested with 400 pure noise signals and 400 noisy
WCDMA signals for each SNR level and sensing results are
acquired. Furthermore, for comparison purposes, we implement
a constant false alarm rate (CFAR) detector utilizing classical
CFD [36] to identify WCDMA signals. CFAR detector utilizes
cell averaging [37] over the SCF matrix. The detector finds
peaks in the SCF matrix by a peak detector with a CFAR. As
nature of the CFAR detectors, the threshold is set according to
a CFAR. Thus, this detector guarantees a CFAR that can be
selected according to the operational requirements. Please note
that UMTS signals are deliberately selected due to their known
dominant SCF characteristics stemming from cyclic spreading
codes. The results of this test are given in Fig. 12. In view

Fig. 12. Spectrum sensing performances of CFAR detectors and CNN-based
detector with respect to SNR.

of these results, it is clearly seen that the CNN-based detector
outperforms the CFAR detector at all SNR regimes. For example,
the sensing performance of the CNN-based detector is 91.75%
at 3 dB while the probability of detection for the CFAR detector
are 45.6% and 59.4% for the selected false alarm rates as 0.05
and 0.1, respectively.

E. Focusing on the Meaningful Region of Spectral Correlation
Function

As mentioned above, SCF creates a bi-frequency feature
matrix with high data size. Therefore, the training process
necessitates high computation capacity. It should be noted that
we employed a GPU server equipped with four NVIDIA Tesla
V100 GPUs. To make training over a single GPU possible (or to
accelerate the training process), we focused on the meaningful
part of the feature matrices. As shown in Fig. 1, elements
of the matrices have insignificantly small values but except
the elements around the middle of the matrices. Moreover,
this approach allows to investigate the possibility of accuracy
improvement and the fair comparison with the existing DL
networks. As stated in Section V, an SCF matrix has the di-
mension 8193 × 16. Therefore, it is not possible to train such
a dense model in our server equipped with four NVIDIA Tesla
V100 GPUs. To compare our proposed CNN architecture with
a more dense model, we decrease the dimensions of the SCF
matrices by using only 16 × 16 part in the middle of the matrices.
Only in this way, we are able to train complex models such
as LSTM [19] and DenseNet [25] with SCF. Moreover, the
proposed CNN, CLDNN [24], and ResNet [12] are also trained
with the shrunken SCF matrices. It is worth saying that, we
conduct four-class classification (i.e., CASE1) in this study. The
results depicted in Fig. 13 shows that the proposed CNN is
favorable in terms of both low complexity (i.e., epoch time) and
efficient memory allocation, as well as high test accuracy. During
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Fig. 13. Model comparison in terms of memory, complexity, and accuracy.
The epoch time and memory allocation rate are normalized with their maximum
values observed in these models (maximum values for both are observed in
LSTM). The average accuracy is the mean accuracy in the SNR range between
1 dB and 15 dB.

Fig. 14. Test accuracy with respect to SNR values for the proposed CNN,
CLDNN, LSTM, ResNet, and DenseNet models.

this study, batch sizes are kept same for all models. The memory
allocation and training time have been normalized by LSTM’s
memory allocation rate and training time, respectively; thus,
computer-independent results are provided in Fig. 13. It should
be noted that early stopping is used during training of models
and the minimum number of epochs is required by the proposed
CNN. Furthermore, Fig. 14 denotes the accuracy with respect
to SNR levels for each model. By considering results, it can be
observed that the proposed CNN is more robust and efficient
than the existing models. Moreover, it is seen that CNN gives
better results with this smaller matrix than the complete matrix
is used. By eliminating the region except for the meaningful part
of SCF, the input matrices become more distinct from each other.
Fig. 1 implies that SCF matrices have similarities except for the
meaningful part. The confusion matrices in Fig. 15 for 16 × 16
inputs denote the improvement in the precision of AWGN. This

Fig. 15. Confusion matrices for CASE1 at SNR levels of (a) 1 dB and (b) 5 dB
when 16 × 16 inputs are employed.

Fig. 16. The test accuracy of the proposed CNN architecture with respect to
input size.

explains why the small portion of the matrix can lead to higher
accuracy.

It is also explored how the dimensions of the small partition
affect the performance of the CNN model. The results show that
using 4 rows does not perform well enough. When using rows
between 8 and 128 (as power of two), the results are satisfactory.
The test accuracy with respect to input size is demonstrated in
Fig. 16. It is revealed that by considering the accuracy at lower
SNR regimes and the training time, 16 × 16 is the most suitable
size for the CNN.

VII. CONCLUSION

In this study, a DL-based method utilizing SCF as an input to
the designed CNN model to achieve spectrum sensing or signal
identification interchangeably or jointly without the requirement
of any a priori information is proposed. First approach inves-
tigates the joint sensing and classification of wireless signals.
Second, a sequential approach is adopted. The results show that
sequential approach performs better than the joint approach.
Moreover, comparative analysis indicated the superiority of
SCF as a distinctive feature when compare to the contempo-
rary features utilized for currently available DL-based detector
models. The results also imply that under stringent channel
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conditions, the CNN model of the proposed method provides
better spectrum sensing performance than other available DL
models, SVMs, and classical CFD. These results indicate that
applicability of DL-based techniques in the rapidly changing
communications environment of contemporary wireless com-
munications networks. It should be noted that SCF can extract
the unique characteristics of the signals with low sensitivity to
noise. Therefore, it is possible to train a network using a small
number of signals. But the computational complexity of SCF is
high. Also, since SCF produces an output in the bi-frequency
plane, the data size can be large. Thus, it may require batch size
reduction when training larger datasets. Moreover, it may cause
out of memory error on some GPUs. Multiple GPUs can be used
to avoid memory error. If it is required, it is possible to scale
SCF to larger datasets by increasing computational capacity.
Furthermore, focusing on meaningful part of SCF reduces the
data size. Hence, the training complexity can be decreased.

In subsequent studies, the performance of the proposed
method for sensing and identification of other wireless signals
or modulation techniques with cyclic features can be explored.
Also, Doppler shift is required to be investigated for vehic-
ular applications. It is stated above that the dataset mostly
includes signals received through Rayleigh fading channels.
As remembered, Rayleigh fading creates signals with uniform
phase distribution. Similarly, although the Doppler shift pro-
duces a phase rotation, it corresponds to the rotation of the
uniformly distributed phase on a circle in polar coordinates.
In addition, considering that the transmitter and receiver are
different and asynchronous devices, the current system is subject
to some phase shift. It is observed in the above results that
the performance is high under these conditions. However, more
detailed studies are needed on the effect of Doppler shift on
system performance. Considering the simple implementation
of CASE1, residual networks should be further investigated
to improve sensing performance by exploiting noise features.
Furthermore, the performance of the proposed method can be
investigated against adversarial attacks and efforts can be made
to develop various techniques to strengthen its resistance to these
types of intrusions. Although this study focuses on supervised
learning, it is possible to improve the performance of the pro-
posed method by supporting unsupervised learning methods in
feature extraction.
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