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Intrinsic Resiliency of S-Boxes Against
Side-Channel Attacks–Best and Worst Scenarios
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Abstract— Constructing S-boxes that are inherently resistant
against side-channel attacks is an important problem in cryp-
tography. By using an optimal distinguisher under an additive
Gaussian noise assumption, we clarify how a defender (resp.,
an attacker) can make side-channel attacks as difficult (resp.,
easy) as possible, in relation with the auto-correlation spectrum of
Boolean functions. We then construct balanced Boolean functions
that are optimal for each of these two scenarios. Generalizing the
objectives for an S-box, we analyze the auto-correlation spectra
of some well-known S-box constructions in dimensions at most
8 and compare their intrinsic resiliency against side-channel
attacks. Finally, we perform several simulations of side-channel
attacks against the aforementioned constructions, which confirm
our theoretical approach.

Index Terms— Substitution boxes (S-boxes), cryptography,
side-channel analysis, constructions.

I. INTRODUCTION

S -BOXES are prominent targets for side-channel attacks,
because they allow, from an attacker standpoint, to distin-

guish clearly between correct and incorrect hypotheses on key
guesses. It has already been underlined in early papers [7],
[22], [23], [47] that a notion of correlation for S-box coordi-
nate functions relates to the side-channel efficiency.

Recently, the article [12] revisited from a mathemati-
cal point of view the link between S-box properties and
side-channel attacks. However, the scope of this analysis is
limited, since it targets a particular attack (namely the differ-
ential power analysis [28]) and a particular kind of attacked
device (namely a hardware implementation with precharge
logic which leaks in the Hamming weight model).
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In this article, we generalize the analysis by leveraging
on the optimal side-channel attack. The optimal side-channel
attack consists in the maximum likelihood distinguisher, con-
sidering that the leakage model is known by the attacker. In
particular, there is no issue of possible misinterpretation of the
output with this distinguisher, as opposed to particular attacks,
such as differential power analysis, where either the largest or
the smallest bias (positive or negative peak) betrays the correct
key. Therefore, in this paper, the criterion does not need to
resort to absolute values (as is the case in [12]). Moreover,
we aim to be independent of specific leakage models, hence we
consider the simple mono-bit leakage model. As noticed in the
seminal paper about side-channel attacks [28], the mono-bit
leakage model allows for a direct connection between the
target algorithmic properties of the S-box and the side-channel
attack.

A. Contributions

In this paper, we show that, in the case of mono-bit
side-channel attacks, the attack outcome is determined by
the auto-correlation of the targeted S-box coordinates. This
criterion is not usually considered when analyzing S-boxes.
Therefore, we study both best and worst cases of S-boxes
which optimize also the auto-correlation parameter. General
constructions are studied, which are primarily optimizing the
auto-correlation, considering the set of the other classical
robustness metrics as a second improvement factor. As an
interesting byproduct, the value of autocorrelation for Dob-
bertin’s iterative construction is provided. Besides, some par-
ticular constructions, leveraging rotation-symmetric S-boxes,
also reveal new S-boxes.

B. Outline

The rest of the paper is structured as follows. Section II
provides the necessary mathematical tools useful for the subse-
quent analyses. The next section III explains how side-channel
attacks relate to the auto-correlation function of the S-box
coordinates. S-boxes taking into consideration the optimization
of this new parameter are constructed in Sec. IV. Specific
rotation-symmetric S-boxes are analyzed under the same prism
in Sec. V (and some truth tables are listed in Appendix A).
Practical evaluation using simulated side-channel is carried out
in Sec. VI. The same section also lists open-issues not resolved
in this paper. Eventually, Sec. VII concludes the paper.

II. PRELIMINARIES

A. Mathematical Definition of S-Boxes

We denote by F2 = {0, 1} the finite field with two
elements; F

n
2 is the n-dimensional vectorspace over F2. The
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(canonical) inner product over F
n
2 is the F2-bilinear operation:

(a, b) �→ a · b = �n
i=1 ai bi . A linear hyperplane is a vector

subspace whose dimension is one less than that of its ambient
space. In F

n
2, the linear hyperplanes are the sets of equation

a · x = 0 where a �= 0. An n × m S-box (or equivalently,
an (n, m)-function) F : F

n
2 → F

m
2 can be considered as the

parallelization of m Boolean functions sharing the same input:
fi : F

n
2 → F2, where 1 ≤ i ≤ m,

so that F(x) = ( f1(x), f2(x), . . . , fm(x)) for all x ∈ F
n
2. The

functions ( fi )1≤i≤m are called the coordinate functions of F ,
and their linear combinations c · F = �m

i=1 ci fi with non-all-
zero coefficient vectors c = (c1, c2, . . . , cm) ∈ F

m
2

∗ are called
the component functions of F .

For any x = (x1, x2, . . . , xn) ∈ F
n
2, we define a cyclic

permutation ρ on x by ρ(x) = (x2, x3, . . . , xn−1, x1). Then
an n × m S-box F is said to be rotation symmetric (RSSB)
if F(ρ(x)) = ρ(F(x)) for all x = (x1, x2, . . . , xn) ∈ F

n
2. For

instance, any power function F(x) = xd over F2n gives a
rotation symmetric (n, n)-function when F2n is decomposed
over a normal basis.

We denote the set of all n-variable Boolean functions by
Bn . Any Boolean function f (x1, x2, . . . , xn) ∈ Bn can be
expressed uniquely in the form of a multivariate polynomial
over F2, called its algebraic normal form (ANF):�

u∈F
n
2

au

�
n�

i=1

xui
i

�
,

where the coefficients au belong to F2. The summation vari-
able u is a dummy variable running over the universe F

n
2. The

maximum Hamming weight of u with non-zero au is called
the algebraic degree of f , which is denoted by deg( f ).

In some cases we shall identify F2n with the field F2n (after
this field being an n-dimensional vector space over F2)

B. Cryptographic Properties of S-Boxes

We now briefly review the basic definitions regarding the
cryptographic properties of Boolean functions and extend them
to S-boxes by using component functions.

Cryptographic functions must have high algebraic degree to
achieve good confusion properties (the notion of confusion has
been originally introduced by Shannon [51], as well as that of
diffusion). The affine functions are those Boolean functions
with algebraic degree at most 1. An affine function having
constant term equal to zero is called a linear function.

The Walsh-Hadamard transform of an n-variable Boolean
function f is the even integer-valued function W f defined as
W f : F

n
2 → [−2n, 2n] ω �→ W f (ω) = �

x∈F
n
2
(−1)ω·x⊕ f (x).

We call f balanced if its Hamming weight is equal to 2n−1,
which is cryptographically desirable to avoid the statistical
imbalance in the output of f . Notice that f is balanced if and
only if W f (0n) = 0 (we use 0n to denote the all-zero vector
of length n).

For n even, bent functions are those Boolean functions
achieving optimal Hamming distance 2n−1−2

n
2 −1 to the vector

space of affine Boolean functions. Equivalently, they have their
Walsh spectrum taking only the two values ±2

n
2 . It is known

that any bent function has algebraic degree at most n
2 , see

e.g. [8]. Semi-bent functions have, by definition, their Walsh
spectrum taking the three values 0 and ±2

n
2 +1. For n odd,

semi-bent functions (or near-bent1 since there are two names
for the same notion) have their Walsh spectrum taking the
three values 0 and ±2

n+1
2 . The notions of bent and semi-bent

functions extend to any S-boxes: such function F is bent (resp.
semi-bent) if all its component functions c · F , c �= 0, are also
bent (resp. semi-bent).

The nonlinearity of f is defined as the minimum Hamming
distance between f and n-variable affine functions. It can
be expressed in terms of the Walsh-Hadamard transform as
follows:

N L f = 2n−1 − 1

2
max
ω∈F

n
2

|W f (ω)|. (1)

Boolean functions with high nonlinearity are required in a
cryptosystem to resist linear cryptanalysis and to achieve good
confusion properties.

• For even n, Boolean functions attaining the maximum
nonlinearity of 2n−1 − 2

n
2 −1 are precisely the bent func-

tions [16], [32], [38]. Bent functions are not balanced,
however they can be used to construct balanced functions
with high nonlinearity.

• For odd n, the nonlinearity value 2n−1 − 2
n−1

2 , which is
attainable for any odd n, is known as the bent concate-
nation bound (the concatenation of two (n − 1)-variable
bent functions achieves this nonlinearity).

The auto-correlation function of f is given by:
r f (d) =

�
x∈F

n
2

(−1) f (x)⊕ f (x⊕d) =
�
x∈F

n
2

(−1)Dd f (x),

where d ∈ F
n
2. It is clear that, for any n-variable Boolean

function f , we have r f (0) = �
x∈F

n
2
(−1)0 = 2n . One can

see that, for balanced Boolean functions, the sum of all the
auto-correlation values is null. Indeed, we have (according to
the so-called Wiener-Khintchine theorem):�

d∈F
n
2

r f (d)(−1)ω·d = W 2
f (ω)

for every ω (and we have the result by taking ω = 0n).
There are two important cryptographic criteria called global
avalanche characteristics (GAC) [57] related to the autocor-
relation spectrum, which are used to quantify the level of
diffusion ensured by a function. The maximum absolute value
in the autocorrelation spectrum (except at the origin—this
value is uninteresting because it does not depend on f ) is
referred to as the absolute indicator, denoted by

� f = max
d∈F

n
2
∗ |r f (d)|,

where F
n
2
∗ = F

n
2 \ {0} and the other one is known as the

sum-of-squares indicator, given by

σ f =
�
d∈F

n
2

r2
f (d).

1We shall call “near-bent” the semi-bent functions in odd dimension, and
keep the term “semi-bent” for when the parity of n will not be specified.
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For the purpose of this paper, we define the non-absolute
indicator as

� f = max
d∈F

n
2
∗ r f (d),

which is used as a measure of side-channel resiliency (as
we shall see in Section III-A). The higher the value of � f ,
the better resistance against side-channel attacks.

Let us now consider the case of S-boxes. The nonlinearity
and absolute indicator of an S-box are determined by the
component function(s) having the worst measure. In other
words, the nonlinearity (resp., the absolute indicator) equals
the lowest (resp., the highest) nonlinearity (resp., absolute
indicator) of all the component functions of the S-box. A non-
linearity is considered as good if it is not too far from the
optimum, which is 2n−1 −2

n−1
2 for (n, n)-functions, according

to the Sidelnikov-Chabaud-Vaudenay bound (see e.g. [9]). The
algebraic degree of an S-box is defined as the maximum
algebraic degree of the coordinate functions and it is also the
maximum algebraic degree of the component functions.

An n × m S-box F is called differentially δ-uniform [45]
if the equation F(x) ⊕ F(x ⊕ γ ) = β has at most δ solutions
for all γ ∈ F

n
2
∗ and β ∈ F

m
2 . Accordingly, δ is called the

differential uniformity of F . The values of δ are always even
since if x is a solution of equation F(x) ⊕ F(x ⊕ γ ) = β
then x ⊕ γ is also a solution. This implies that the smallest
possible value of δ for an (n, m)-functions is 2; the functions
achieving this value are called almost perfect nonlinear (APN).
A cryptographically desirable S-box is required to have low
differential uniformity (δ = 2 is optimal, δ = 4 is good),
which makes the probability of occurrence of a particular pair
of input and output differences (γ, β) low, and hence provides
resistance against differential cryptanalysis.

Given two (n, m)-functions G and H , we say that they are
affine equivalent if G(x) = A1(H (A2(x))), where A1 is an
affine permutation on F

m
2 and A2 is an affine permutation on

F
n
2. It is known that the nonlinearity, algebraic degree, and

differential uniformity are invariant under affine equivalence.

III. SIDE-CHANNEL PROBLEM STATEMENT

A. Monobit Case
Let t, k ∈ F

n
2 respectively be a plaintext and a key used in a

cryptographic algorithm, such as a block cipher, which starts
by a key addition (xor operation) followed by a confusion
function (an S-box F). In this section, the attacker targets
one bit of the S-box, that is the output of f : F

n
2 → F2,

applied to t ⊕ k. So here, f is a balanced Boolean function
(e.g., a coordinate function of the S-box). In realistic scenarios,
the measurements are noisy; hence, not only one but several
of them need to be captured by the attacker, so as to make
a statistical attack. We resort to vectorial notation, where
measurements 	x = (x1, . . . , xQ) consist of a collection of Q
queries. Let us denote the correct key by k∗. It is unknown and
shall be guessed by exhaustive search over all keys k ∈ F

n
2.

The observable leakage is thus 	x = 	y(k∗)+	n, where the model
is 	y(k) = f (	t ⊕ k), that is 	y(k) = ( f (t1 ⊕ k), . . . , f (tQ ⊕ k)).
In case the measurements feature additive Gaussian noise,
	n ∼ N (	0,
) is a Gaussian noise, with 
 = σ 2IdQ×Q , where
IdQ×Q is the Q × Q identity matrix. Each value xq (where
1 ≤ q ≤ Q) is also called a trace, and the observable leakage
	x is altogether referred to as the traces acquisition campaign.

Fig. 1. Attack setup on the leakage function y = f (t ⊕ k∗), where t is one
known plaintext, k∗ is the secret key, F is the substitution box and i is the
leaking coordinate of F (hence f = Fi ).

The adversary optimizes its probability of success to recover
the correct key thanks to the optimal distinguisher [24]. It
consists in guessing the correct key k∗ with the maximum
likelihood rule

k̂ = argmaxk p(	x |	y(k)). (2)

The setup we consider is depicted in Fig. 1, where “vectorial
values” are represented as fat arrows, whereas “single bits”
are represented as thin wires. In this figure, the attack target
is the S-box coordinate i (where 1 ≤ i ≤ n). We have that
p(	x |	y(k)) is equal to:

1

(2π |
|) D
2

exp

	
−1

2
(	x − 	y(k))�
−1(	x − 	y(k))




= constant × exp

⎡⎣− 1

2σ 2

Q�
q=1

(xq − y(tq , k))2

⎤⎦ , (3)

hence the attacker aims at minimizing

1

Q

Q�
q=1

(xq − y(tq, k))2, (4)

which, by the law of large numbers when Q → +∞, tends
to:

E(X − Y (T, k))2 = E(Y (T, k∗) + N − Y (T, k))2

= E( f (T ⊕ k∗) − f (T ⊕ k))2 + σ 2.

Notice that in (3), the notation z� stands for transposition of
column z (hence z� is a row), and that 
−1 stands for the
inverse of 
, namely 
−1 = 1

σ 2 IdQ×Q .
So, assuming that the plaintexts T are uniformly distributed

over F
n
2 (which is a fair assumption in cryptography), the

attack is equivalent to minimizing over all k the value:�
t∈F

n
2

( f (t ⊕ k∗) − f (t ⊕ k))2. (5)

This quantity is classical in cryptography, namely:�
t

( f (t ⊕ k∗) − f (t ⊕ k))2 = 2n+2κ(k, k∗), (6)

where κ(k, k∗) bears the name of confusion coefficient [19].
Now, we know that difference square ( f (t ⊕ k∗) − f (t ⊕ k))2

equals�
1

2

�
1 − (−1) f (t⊕k∗)

�
− 1

2

�
1 − (−1) f (t⊕k)

��2

= 1

4

�
(−1) f (t⊕k) − (−1) f (t⊕k∗)

�2

= 1

2

�
1 − (−1) f (t⊕k∗)⊕ f (t⊕k)

�
.
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Fig. 2. Illustration of two side-channel situations, optimal for the defender
(in blue) and for the attacker (in red).

Hence, minimizing (5) amounts to maximizing�
t

(−1) f (t⊕k∗)⊕ f (t⊕k). (7)

This value which depends only on d = k∗ ⊕ k is maximized
when d = 0. For the sake of clarity, the value in Eqn. (7) is
also referred to as the autocorrelation of f at input difference
d and is denoted as r f (d).

To increase the success of the attack, one aims at having
the nearest rival,2 (k �= k∗) be as far as possible from
the correct guess. Hence the goal is to make as small as
possible the maximum value within {�t (−1) f (t)⊕ f (t⊕d), d �=
0}. Notice that this objective holds for comparisons between
S-boxes of the same input bitwidth (called n). Otherwise,
when S-boxes f and f  have different numbers of input bits
(n �= n), the comparison would hold on maxd �=0 2n − r f (d)

vs maxd  �=0 2n − r f (d ), or alternatively maxd �=0
1

2n r f (d) vs
maxd  �=0

1
2n r f (d ). We do not consider comparison between

S-boxes of different sizes in the sequel.
Also notice that when r f (d) = 2n for a nonzero d , then the

possible keys are the correct key k∗ or the challenger k∗ ⊕ d .
For example, the least significant bit f of the PRESENT [3]
S-box F features such a tie because one has

∀z ∈ F
4
2, f (z) = f (z ⊕ 0 × 9),

where 0 × 9 (in hexadecimal) represents (1001)2 in binary
notation. Hence, it is possible to distinguish by side-channel
analysis only between pairs of key candidates k∗ and k∗ ⊕
0 × 9.

B. Multi-Bit S-Boxes

1) Attacks on Coordinate Functions: We now consider that
the S-box is vectorial (m > 1). we need that the S-box be
balanced (i.e. with uniformly distributed output). As explained
in e.g. [9], one simply requires that the S-box number of output
bits be bounded above by its number of input bits. A special
case is that the S-box is a permutation of F

n
2.

The situation of S-boxes regarding side-channel analysis is
depicted in Fig. 2 for 2 coordinates (out of m = n). This
figure represents the auto-correlation r f (d) as a function of
the difference d = k ⊕ k∗ ∈ F

n
2 between candidate key k

2The nearest rival in the context of side-channel distinguishers, is a term
coined by Whitnall and Oswald, e.g., in [55].

TABLE I

EXTREMAL VALUES OF r f (d), d �= 0, WHERE f IS ANY COMPONENT

FUNCTION OF THE DES SECOND S-BOX F : F
6
2 → F

4
2

and actual secret key k∗. The origin value is 0n and other
values on the abscissa axis represent the vectorspace F

n
2. The

left-hand side graph represents the situation of a coordinate
f where the nearest rival dmax (relative to the correct key
k∗) features an auto-correlation value close to 2n = r f (0).
This configuration favors the defender, as the attacker has
hard time distinguishing between d = 0 and d = dmax
(recall that in real side-channel, some noise blurs the values
of the auto-correlations). At the opposite, the right-hand side
graph highlights the situation of another coordinate for which
maximum auto-correlation over incorrect key differences is
inferior to the former case. The attacker can distinguish more
clearly between the correct and the nearest rival key.

The relevant metrics are then deduced from the following
analysis:

• From the attacker point of view, the attacker chooses the
coordinate which is the most favorable for his key guess
in the presence of noise. Hence, the attacker would like
(if it was possible for him to devise an S-box) to select
a coordinate i , 1 ≤ i ≤ n, which increases the “distance
to the nearest rival”, i.e., his objective is to minimize
min1≤i≤n maxd �=0 rFi (d) = min1≤i≤n �Fi .

• From the defender (or designer) point of view, the goal
is to avoid any weak coordinate in the S-box, because
it is clear that it is the one which would be targeted
by the most powerful attacker. Hence the objective is to
maximize min1≤i≤n �Fi .

Remark 1: [Signedness of r f (d)] The important parameter
is maxd �=0 r f (d) and not maxd �=0 |r f (d)|. Indeed, the criterion
for the side-channel attacker to succeed hardly (resp. easily)
is that the auto-correlation of the nearest rival is close to
(resp. far from) 2n. For example, in the conceptual figure 2,
the largest value of r f (for d �= 0) occurs at d = dmax =
argmaxd �=0r f (d) whilst its smallest value occurs at d =
dmin = arg min d �=0 r f (d). It can be seen that in the left case,
maxd �=0 |r f (d)| is same as r f (dmax). However, in the right
case, maxd �=0 |r f (d)| is same as |r f (dmin)|.

Therefore, r f shall be considered without absolute values.
For the sake of illustration, in the DES block cipher (NIST
FIPS PUB 46-3, which features n = 6 and m = 4), the
extreme values for r f (d), d �= 0 in S-box 2 (denoted as F) are
given in Table I. It is easy to see that values of maxd �=0 r f (d)
would all be incorrect by considering |r f | instead of r f (for
f ∈ {F1, F2, F3, F4}). Indeed, for this S-box, we have that
| mind �=0 r f (d)| > maxd �=0 r f (d).

Therefore, in the remainder of the paper, we never study
|r f | but stick to r f (signed).

2) Attacks on Component Functions: In the previous
section III-B.1, we argued that, often, attackers base their
guess on single bits. However, these bits can be extended
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from coordinate to component functions of the S-box.3 We
recall that a component function is a linear combination (with
coefficients in F2) of all the coordinate functions. Let c ∈
F

m
2 . A component function of an S-box F : F

n
2 → F

m
2 is

f : F
n
2 → F2, t �→ f (t) = c · F(t), where “ · ” is the

canonical scalar product in F
m
2 . Indeed, modern block ciphers

consist in the iterative alternation of a confusion layer (e.g.,
made up of S-boxes) and a diffusion layer (e.g., a linear
mapping). For example, in substitution-permutation networks
(such as the AES), the S-box is fed into a linear bijection
(e.g., MixColumns in the case of AES) computing linear
combination of bits. All of those bits leak their values through
a side-channel, hence it is safe to imagine that an attacker
will combine bits (in F2) to find the most favorable linear
combination, as might show up in the diffusion layer (such
as MixColumns). Notice that MixColumns is made up of
xor gates (additions in F2), which are known to be very
glitchy. Now glitches do contribute significantly to the overall
leakage of the cryptographic function (see attack [31], [35],
defense [20], [42], [43], and analysis [2] papers).

Hence, we pursue in the sequel of this article the following
goals:

• From the attacker point of view: minimize
minc �=0 maxd �=0 rc·F (d).

• From the defender (or designer) point of view: maximize
minc �=0 maxd �=0 rc·F (d).

C. Positioning of Our Work With Respect to the
State-of-the-Art

The theoretical study of side-channel analysis allows to
grasp the impact of several factors on the outcome of attacks.
Historically, Whitnall and Oswald [56] suggested the distance
to nearest rival for distinguishers, which they studied in
different scenarios (noise, model discrepancy with respect
to actual side-channel, etc.). However, their criterion has
consistency issues, because it is not invariant by the scaling of
the distinguisher. Therefore, it fails to be fair when comparing
distinguishers of different kinds. Such flaws relative to the
unfairness of the attack outcome predictability were reported
for instance in [49]. An analysis based on success probability
(the focus of which is not on the distinguisher value but on
the attack outcome) is proposed in [21]. The analysis reveals
that the relevant parameter, called success exponent, is a
normalized quantity of the asymptotical distinguisher. In [14],
it is analyzed that only two factors impact the success expo-
nent, namely the confusion coefficient and the noise variance.
The confusion coefficient gathers cryptographic properties
(typically, of the S-box) and the leakage model (non-injective
function, such as the Hamming weight or the UWSB).

In our paper, we consider a mono-bit leakage model, so that
we focus only on the impact of the S-box. Therefore, we
assume that the attacker targets one bit of the S-box output, and
selects it so as to maximize his advantage (that is: improve the
distance of the autocorrelation regarding the correct key guess
to its nearest rival). The motivation to select a bit at the output
of the S-box arises from the goal of best distinguishing the

3Recall that paper [12] handles multi-bit differential power analysis, but
simply assuming that the leakage is impacted by the coordinates alone, and
not the component functions of the S-box.

correct key from others, which (as already mentioned) is also
captured by the notion of confusion coefficient κ (recall (6)). It
is now well known that the confusion coefficient is favorable
to the attacker at the output of S-boxes [7], [10], [12], [22],
[23], [46], [47].

However, it is unclear how to use output bits to devise
an attack. Historically, Kocher introduced side-channel distin-
guishers targeting one bit [28], in attacks now referred to as
“difference of means”: one bit of the S-box output is selected,
side-channel traces are partitioned in two groups according
to this bit, and the difference of means in each partition
constitutes the distinguisher. Later it has been noticed that
usual devices leak all the bits at once, because processors
or application specific circuits manipulate words (e.g., bytes
when n = 8). Since the actual leakage function is hard to
characterize, the assumption is often made that the leakage
is the sum (in Z) of the bits. This yields the so-called
Hamming weight leakage model, as analyzed typically in [4].
Still, in practice, all the bits in a register do not have the
same leaking characteristics. For instance, the LSB (least
significant bit) can receive or not an input carry when per-
forming arithmetic computations. For this reason, a refined
Unevenly Weighted Sum of Bits (UWSB) model has been
introduced [24], [54], [58]. It can be noticed that for imperfect
masking schemes (see e.g., low-entropy masking schemes
such as Rotating Substitution-box Masking, also known as
RSM [41]), the effect of masking can be to have a leakage
model which is a UWSB (see equation (4) of [39]). In the first
article about the confusion coefficient [19], the performance
of a distinguisher was based on the computation of true/false
positive/negative matrix (also known as a confusion matrix),
based on a binary outcome of the prediction. Later on, the con-
fusion coefficient has been extended to real-valued leakage
models [21], such as the UWSB model. The coefficients in
this combination (in R, now; indeed, they model as accurately
as possible the physical leakage arising from analog logic
implementing the cryptographic computation under analysis)
are unknown, and possibly of opposite signs. Therefore it is
still considered a safe practice to attack on a bit-by-bit basis:
the (n − 1) remaining bits are considered unknown, and thus
de facto integrated amongst the noise sources.

Constructively combining all the n bits requires profiling. In
side-channel analysis, this method is referred to as stochastic
attacks [52]. However, building a model requires many training
traces. Depending on the operational constraints, this training
set might not be available, since the attacker needs an open
copy of the device he can manipulate freely to generate traces
of his choice. Besides, owing to miniaturization of silicon
technologies, the dispersion increases, making two instances
of the same device fairly different. This is studied in papers
about template attacks (profiling on one device and attacking
on another) [18], [40]. Because of those limitations and the
complexity of the learning stage (and of resulting estimation
errors, creating so-called epistemic noise), many practical
attacks remain based on mono-bit models.

IV. CONSTRUCTION OF OPTIMAL BOOLEAN FUNCTIONS

Recall that the non-absolute indicator � f has been defined
in Subsection II-B. In this section, we first show that � f < 0
is impossible for n > 1 and that the values of the Walsh
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transform of a balanced Boolean function f such that � f = 0
(i.e. which is optimal in terms of the objective of an attacker)
all belong to a set that we determine. We deduce that there
is no 4-variable or 6-variable balanced Boolean function with
� f = 0. We also deduce that the minimum possible nonlin-
earity of f with an odd number n of variables and such that
� f = 0 is 2n−1−2

n−1
2 . We compute the possible nonlinearities

of those functions satisfying � f = 0 for even n ≤ 16.
This shows that the nonlinearity requirement while allowing
� f = 0 is less demanding while increasing n. Secondly,
we construct balanced Boolean functions with � f = 0 (resp.
� f = 2n) for the case of odd (resp. even) number of variables.
Further, we present a construction, obtained by modifying the
class of Maiorana-McFarland (M-M) bent functions [16], [32]
and employing the balanced Boolean functions generated by
Dobbertin’s iterative construction [17], whose auto-correlation
spectrum is completely characterized (hence, it can be utilized
by search algorithms to construct optimal Boolean functions
for best and worst scenarios).

A. Impossibility of Having � f < 0 for n > 1

We start by recalling the following lemma, which is subse-
quently used to prove that no Boolean function f exists with
a number of variables greater than 1 and such that � f < 0.

Lemma 1 [13]: Let f ∈ Bn, where n > 1. Then

r f (d) ≡ 0 [mod 4] f or any d ∈ F
n
2 .

Moreover, if f is balanced, then r f (d) is a multiple of 8.
Theorem 1: There is no Boolean function f ∈ Bn (where

n > 1) with � f < 0.
Proof: We have already recalled the Wiener-Khintchine

theorem, whose statement is that the Fourier transform of
r f (d) coincides with the squared Walsh transform of f , i.e.,

W 2
f (a) =

�
d∈F

n
2

r f (d)(−1)a·d for all a ∈ F
n
2 .

Hence, substituting a = 0n into this equation, we have�
d∈F

n
2

r f (d) ≥ 0. Suppose there exists f with � f < 0. From
Lemma 1, it is then clear that�

d∈F
n
2

r f (d) = 2n +
�

d∈F
n
2
∗

r f (d) ≤ 2n − 4(2n − 1) < 0,

which is a contradiction. �

B. Relating � f With Nonlinearity

We now study the possible values of the Walsh transform
of a balanced function such that � f = 0.

Theorem 2: Let n > 3 and f be a balanced n-variable
Boolean function such that � f = 0 (i.e. having only
non-positive auto-correlation values, except for the one at
all-zero point). Then all the values of the Walsh trans-
form of f belong to the set Sn = {ω ∈ 4Z; ∃k ∈
{0, 1, . . . , 2n−4}; ω2 = 2n ± 16k}.

Proof: Since f is balanced, we have�
d∈F

n
2

r f (d) = 0, (8)

where r f (d) is the auto-correlation function of f .

Let D = {d ∈ F
n
2
∗ | r f (d) �= 0} and M be the multi-set of

all the elements of D, each of which with multiplicity
|r f (d)|

8 .
Then, as r f (d) ≤ 0 for every d ∈ F

n
2
∗, the left-hand side of

the above sum can be rewritten as follows:
2n +

�
d∈D

r f (d) = 2n − 8|M| = 0,

and so, |M| = 2n−3.
On the other hand, by Fourier transform on the

auto-correlation function, we have:
W 2

f (a) =
�
d∈F

n
2

r f (d)(−1)a·d = 2n − 8
�
d∈M

(−1)a·d .

Since |M| is even, we have
�

d∈M(−1)a·d ≡ 0 [mod 2] and
the proof is complete. �

As a consequence, we have:
Corollary 1: For n = 4 and n = 6, there is no n-variable

balanced Boolean function f with � f = 0.
Proof: We find that S4 = {0,±4} and S6 = {0,±4,±8}.

So, the minimum nonlinearity can be 24−1 − 4
2 = 6 and

26−1 − 8
2 = 28 for n = 4 and 6, respectively. However, these

are the nonlinearities of the bent functions for both cases,
which cannot be attained by balanced functions. �

For both n = 4 and 6, it is easy to find by a computer
search that the minimum achievable value of � f for a balanced
n-variable Boolean function f is equal to 8. For n = 4,
an exhaustive search yields that there exist 12000 balanced
functions with � f =8. For n = 6, we have performed a heuristic
search and found that there exist balanced functions with
� f = 8. Note that by Theorem 1 and Corollary 1, we have that
� f > 0 for 4- and 6-variable balanced functions. Then, as a
consequence of Lemma 1, it is clear that � f can be at least
8 for these functions, which is achieved by our search results.
But our heuristic search could not find an 8-variable balanced
function with � f = 8. Note that in that case, there exist in the
literature a few examples of balanced Boolean functions with
absolute indicator � f = 16. An example is given in [26] as
follows in hexadecimal:

18CA9ED8BC4EC1AFE2F4C023FA63E789 \
49455BC59DB873BE79409BAE4B289029 (9)

and we know then that the minimum of � f can be at most
16 for n = 8. It is difficult to have more precise information
but a little more insight can be obtained through the study
of the nonlinearity. In Theorem 2, the maximum value of ω

equals 4 · �2
n−3

2 �. This implies that any balanced Boolean
function f ∈ Bn with � f = 0 has nonlinearity at least
2n−1 − 2 · �2

n−3
2 �. In Table II, for n even between 8 and

16, we have displayed this value 2n−1 − 2 · �2
n−3

2 � and the
value that Dobbertin obtained in [17] as the nonlinearity of a
balanced function that he constructed with his iterative con-
struction4 (this latter value was conjectured by him as the best
possible nonlinearity of any balanced function). Notice that the
existence question for 8-variables balanced Boolean functions
with nonlinearity 118 is still open. (A negative answer to this
question, that is, a positive answer to Dobbertin’s conjecture
for n = 8, would also rule out the possibility of having

4See Subsection IV-D.1.
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TABLE II

COMPARISON OF THE MINIMUM POSSIBLE NONLINEARITIES REQUIRED
TO HAVE � f = 0 WITH THE MAXIMUM NONLINEARITIES

CONJECTURED BY DOBBERTIN [17] FOR n-VARIABLE

BALANCED FUNCTIONS

balanced functions of 8 variables with � f = 0: such functions
would not exist).

For n odd, we shall see that functions with � f = 0 exist.
The maximum value of ω in Theorem 2 equals

√
2n + 2n (i.e.,

2
n+1

2 ) and we have then:
Corollary 2: For odd n > 3, the nonlinearity of any n-

variable balanced Boolean function f such that � f = 0 is

bounded below by 2n−1 − 2
n−1

2 (i.e. by the value of the bent
concatenation bound).
The bent concatenation bound is here a lower bound. Thanks
to Construction 1, we shall be able to design, for every odd
n > 3, functions having � f = 0 and nonlinearity equal to

2n−1 − 2
n−1

2 . We present these functions in Subsection IV-C
below, which is devoted to constructions of functions for the
attacker. There may also exist functions with strictly better
nonlinearity, but we could not find any. We leave this as an
open problem.

C. Constructions of Boolean and Vectorial
Functions for the Attacker

1) Boolean Functions: Recall that the lower is � f , the bet-
ter it is for the attacker.

For small values of n: we have seen that for n = 4 and
n = 6, there is no n-variable balanced Boolean function f
with � f = 0. By performing an exhaustive search for Boolean
functions in 3 and 5 variables, it can be found that the number
of balanced functions with � f = 0 (i.e. which are optimal
in terms of the objective of an attacker) is 56 and 27776,
respectively. We have computationally checked for each case
that the functions are in fact affine equivalent (and represent
then one function, only, up to equivalence).

Constructions for odd n: Let us recall the class of
Maiorana-McFarland (M-M) functions (introduced originally
for designing bent functions, see [16], [32], and later extended
to other kinds of functions in [6]), and which is defined as:

f (x, y) = x · φ(y) ⊕ g(y)

where x ∈ F
s
2, y ∈ F

k
2, φ is any mapping from F

s
2 to F

k
2, and

g is an arbitrary Boolean function with k variables (taking
s = k and φ as an arbitrary permutation on F

k
2 results in the

rather large class of bent functions discovered independently
by Maiorana and McFarland [16], [32]).

Construction 1: Let n ≥ 3 be odd. For every mapping φ :
F

n−1
2

2 �→ F

n+1
2

2 injective whose image set is the complement of
a linear hyperplane, and every n−1

2 -variable Boolean function

g, we define the n-variable Boolean function f (in the M-M

class) as f (x, y) = x ·φ(y)⊕g(y), where x ∈ F

n+1
2

2 , y ∈ F

n−1
2

2 .
Proposition 1: Let f be any function obtained by construc-

tion 1. Assume that E = {0 n+1
2

, ω}⊥ is the linear hyperplane
equal to the complement of the image set of φ. Then f is
balanced, near-bent and is such that:

r f (d) =
⎧⎨⎩

2n, if d = 0n
−2n, if d = (ω, 0 n−1

2
)

0, if d = F
n
2
∗ \ (ω, 0 n−1

2
)

.

Hence, � f = 0.
Proof: We have r f (0n) = 2n as for any n-variable func-

tion. From the definition of the Walsh-Hadamard transform,

we have for every u ∈ F

n+1
2

2 and every v ∈ F

n−1
2

2 :

W f (u, v) = 2
n+1

2
�

y∈φ−1(u)

(−1)g(y)⊕v ·y ∈ {0,±2
n+1

2 }. (10)

Hence f is near-bent. Since φ−1(0 n+1
2

) is empty, we have
W f (0 n+1

2
, 0 n−1

2
) = 0 and f is balanced.

For every u ∈ F

n+1
2

2 and v ∈ F

n−1
2

2 , we have

f (x, y) ⊕ f (x ⊕ u, y ⊕ v)

= x · (φ(y) ⊕ φ(y ⊕ v)) ⊕ u · φ(y ⊕ v) ⊕ g(y) ⊕ g(y ⊕ v).

If v �= 0, we have then that f (x, y) ⊕ f (x ⊕ u, y ⊕ v) is
balanced since φ being injective, we have φ(y)⊕φ(y⊕v) �= 0
for every y, and hence r f (u, v) = 0.
If v = 0, we have then:

f (x, y) ⊕ f (x ⊕ u, y) = u · φ(y) and

r f (u, 0) = 2
n+1

2
�

y∈F

n−1
2

2

(−1)u·φ(y).

The value set of φ(y) being the complement of the linear
hyperplane {0 n+1

2
, ω}⊥, we have

�
y∈F

n−1
2

2

(−1)u·φ(y) = 0 if

u �= ω and
�

y∈F

n−1
2

2

(−1)u·φ(y) = −2
n−1

2 if u = ω, since we

have�
z∈E

(−1)u·φ(y) = 2
n−1

2 and
�

z∈F

n+1
2

2

(−1)u·z = −2
n−1

2 .

This completes the proof. �
There are 2

n+1
2 − 1 distinct linear hyperplanes in F

n+1
2

2 . For

each of them there are 2
n−1

2 ! distinct mappings φ. The number

of functions g is 22
n−1

2 . Let us prove that the different choices
of a hyperplane, a mapping φ and a function g provide distinct
functions; this will show that the number of functions gener-

ated by Construction 1 is (2
n+1

2 − 1)(2
n−1

2 !)22
n−1

2 . Suppose
that

f (x, y) = x · φ(y) ⊕ g(y) and

f (x, y) = x · φ(y) ⊕ g(y)

are the same function, that is, that we have

x · �φ(y) ⊕ φ(y)
� = g(y) ⊕ g(y)
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for every x, y. Suppose first that g(y) �= g(y) for some y ∈
F

n−1
2

2 , then x · �φ(y) ⊕ φ(y)
� = 1 for all x ∈ F

n+1
2

2 and this is

impossible. We deduce that g(y) = g(y) for all y ∈ F

n−1
2

2 , and

x ·�φ(y) ⊕ φ(y)
� = 0 for all x ∈ F

n+1
2

2 , that is, φ(y) = φ(y).
Hence, φ = φ and g = g. This completes the proof.

We have computed that for n = 7, Construction 1 generates
154828800 functions among which 2580480 are of degree 2
and 152248320 are of degree 3.

For any function f generated by Construction 1, we have
deg( f ) = max{deg(φ) + 1, deg(g)} ≤ n+1

2 , � f = 2n (since
there exists d such that r f (d) = −2n), and a nonlinearity

N L f = 2n−1 − 2
n−1

2 (see e.g. [8]).
Remark 2: The attacker does not have the choice of the

parity of n. So the case n even should be also considered. The
same Maiorana-McFarland construction can be used to build
functions in even numbers of variables, but it does not seem
to allow reaching null, nor even small, value for � f .

1. For example, let φ : F

n−2
2

2 �→ F

n+2
2

2 be injective and
have for image set a coset of a linear n−2

2 -dimensional

subspace of F

n+2
2

2 , different from this linear subspace (i.e.
not containing 0), and let g be an n−2

2 -variable Boolean
function; we can define again the n-variable Boolean function

f (x, y) = x · φ(y) ⊕ g(y), where x ∈ F

n+2
2

2 , y ∈ F

n−2
2

2 .
The same calculations show that f is balanced and semi-
bent, that f (x, y) ⊕ f (x ⊕ u, y ⊕ v) is balanced for v �= 0,
and that r f (u, 0) = 2

n+2
2

�
y∈F

n−2
2

2

(−1)u·φ(y); but we have

now r f (u, 0) �= 0 for three values of u �= 0: two giving
r f (u, 0) = −2n and one giving r f (u, 0) = 2n. We have then
� f = 2n and this choice of f is then optimal for the defender.
We leave open the determination whether optimal solutions for
the attacker (i.e. such that � f = 0) can be constructed for n
even.

2. It is possible to reach values of � f significantly smaller
than 2n with the Maiorana-McFarland construction, but these
values cannot be considered as small: relaxing the condition
that the image set of φ is a coset of a linear n−2

2 -dimensional

subspace of F

n+2
2

2 , the value of � f being equal to 2
n+2

2 times
the maximal value of

�
z∈S(−1)u·z = �1S(u) = − 1

2 W1S (u)
for u �= 0, where S is the image set of φ and can be any set
of size 2

n−2
2 not containing 0 and 1S is its indicator function,

we can take for 1S a Boolean function over F

n+2
2

2 of best known

nonlinearity among functions of weight 2
n−2

2 .
3. In fact a better option is not to use the

Maiorana-McFarland construction, but rather to modify
a bent function in 2

n
2 −1 positions (that is, to add to a bent

function a Boolean function g of Hamming weight 2
n
2 −1) so

as to make it balanced (see Subsection IV-D.1 for a proper
way called Dobbertin’s iterative construction to do so while
keeping good nonlinearity). Since r f ⊕g(d) ≤ r f (d)+2wH (g),
this gives � f ⊕g ≤ 2

n
2 .

Construction 2: For any (n − 1)-variable bent function
g, the concatenation f = g||(g ⊕ 1) is a function with
r f (0n−1, 1) = −2n and r f (d) = 0 for all d ∈ F

n
2
∗ \ (0n−1, 1).

Proposition 2: Any function resulting from Construction 2
is balanced near-bent. It satisfies � f = 0.

Proof: It is clear that f is balanced and that W f (ω) ∈
{0,±2

n+1
2 }. This proves the first part. For every f =

g||h and every nonzero a ∈ F
n−1
2 , we have r f (a, 0) =�

x∈F
n−1
2

(−1)Dag(x)+�
x∈F

n−1
2

(−1)Dah(x) = 0 and r f (a, 1) =
2

�
x∈F

n−1
2

(−1)g(x)⊕h(x⊕a) and here we deduce r f (a, 1) = 0

if a �= 0n−1 and r f (0n−1, 1) = −2n . This proves the second
part. �

Note that deg( f ) = deg(g) (if deg(g) ≥ 1). We shall see
that Construction 2 is cryptographically relevant for the design
of S-boxes as well.

We still have that f is balanced near-bent and r f takes
only one nonzero value equal to −2n if we concatenate a shift
g(x ⊕ u) and g(x) ⊕ 1. It should be noted that if g is an
M-M bent function then f = g||(g ⊕ 1) can be obtained by
Construction 1 but not, in general, if we concatenate a shift
g(x ⊕u) and g ⊕1. And there are many constructions of bent
functions outside the M-M class.

Note that, for two (n − 1)-variable bent functions g, h,
the only possibility for the function f = g||h to have the
property r f (d) ≤ 0 for any d ∈ F

n
2
∗ is h(x) = g(x ⊕ u) ⊕ 1

for some u. Indeed, we have already seen that r f (a, 0) =�
x∈F

n−1
2

(−1)Dag(x) + �
x∈F

n−1
2

(−1)Dah(x) = 0 and we have

r f (a, 1) = 2
�

x∈F
n−1
2

(−1)g(x)⊕h(x⊕a)

= 2−2(n−1)
�

x,u,v∈F
n−1
2

Wg(u)Wh(v)(−1)u·x⊕v ·(x⊕a)

= 2−(n−1)
�

u∈F
n−1
2

Wg(u)Wh(u)(−1)u·a

=
�

u∈F
n−1
2

(−1)�g(u)⊕�h(u)⊕u·a,

where �g and �h are respectively the dual bent functions of g
and h, and it is well-known that a function (here �g ⊕ �h)
can not have all its nonzero Walsh transform values of the
same sign, except if it is affine, see e.g. [11]; this completes
the observation since �g ⊕ �h is affine if and only if h(x) =
g(x ⊕ u) ⊕ � for some u ∈ F

n−1
2 and � ∈ F2, and � = 0 does

not provide the correct sign.
2) Vectorial Functions: The condition seen at Subsec-

tion III-B.1 being on each coordinate function, any general
construction of Boolean functions gives a general construction
of vectorial functions satisfying the condition. The condition
of Subsection III-B.2 is more demanding.

Construction 3: Let n = 2k + 1 be an odd integer no less
than 5. We construct an (n, k)-function F whose coordinate
functions fi ’s (1 ≤ i ≤ k) are defined as follows:

fi (x, y) = x · φi (y) ⊕ gi (y)

where
(1) x ∈ F

k+1
2 and y ∈ F

k
2,

(2) φi ’s are mappings from F
k
2 to F

k+1
2 such that for any

(l1, l2, · · · , lk) ∈ F
k∗
2 the linear combination

l1φ1 ⊕ l2φ2 ⊕ · · · ⊕ lkφk

is an injective mapping from F
k
2 to F

k+1∗
2 ,

(3) gi’s are arbitrary Boolean functions on F
k
2.
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The following result is a consequence of the proof of
Proposition 1:

Proposition 3: Let n = 2k +1 ≥ 5 be an odd integer and F
be an (n, k)-function generated by Construction 3. Then any
component function f of F is a balanced near-bent function
with � f = 0.

An (n, m)-function is called bent vectorial if and only if all
of its component functions are bent. It is well-known that the
bent vectorial functions exist only for even n and m ≤ n/2.
Bent vectorial functions are characterized by the fact that all
their derivatives Da F(x) = F(x)+ F(x + a), with a ∈ (Fn

2)
∗,

are balanced (i.e. take each value of F
m
2 the same number of

times 2n−m ) and are then also called perfect nonlinear (PN).
By Construction 2, we present the following construction.

Construction 4: Let n = 2k + 1 be an odd integer no less
than 5 and G = (g1, g2, · · · , gk) be an (n, k)-bent vectorial
function. We construct an (n, k)-function F whose coordinate
functions fi ’s (1 ≤ i ≤ k) are defined as follows:

fi = gi ||gi ⊕ 1.

It follows from Proposition 2 that:
Proposition 4: Let n = 2k +1 ≥ 5 be an odd integer and F

be an (n, k)-function generated by Construction 4. Then any
component function f of F is a balanced near-bent function
with � f = 0.

Remark 3: It is known that, for any n-variable Boolean
function, we have

�
u∈F

n
2

W f
2(u) = 22n and 2nσ f =�

a∈F
n
2

W 4
f (a). This implies that, for any n odd and any

n-variable near-bent function f , we have σ f = 22n+1, which
implies that 22n = �

d∈F
n
2
∗ r2

f (d). Consider the case � f = 2n.

Then, there exists a value d  ∈ F
n
2
∗ such that

��r f (d )
�� = 2n

and r f (d) = 0 for every d ∈ F
n
2
∗ \ {d }. Notice that if f

is balanced, then, since
�

d∈F
n
2

r f (d) = r f (d ) + r f (0) = 0,
we have r f (d ) = −2n. Hence, � f = 0. Note that r f (d) ∈
{0,±2n} for any quadratic Boolean function f ∈ Bn. So the
non-absolute indicator of any balanced quadratic near-bent
function is equal to 0. It should be noted that, for odd n,
there exist (n, n)-functions such that any of their component
functions f is balanced near-bent function with � f = 0. For
example, one can mention the quadratic functions F(x) =
x2i+1 over F2n , where 1 ≤ i ≤ (n − 1)/2 is co-prime with
n. Such power function is called a Gold functions. From a
mathematically (theoretical) point of view, balanced near-bent
function f ∈ Bn with � f = 0 have optimal non-absolute
indicator. But we should point out that in the field of Boolean
functions and S-boxes for cryptographic use, several design
criteria co-exist, related to known attacks on the cryptosystems
in which they are involved. Constructions have been found
to ensure the best possible tradeoffs between the parameters
that quantify the levels at which the functions satisfy these
criteria. However, when a new criterion appears, because of
the invention of a new attack, tradeoffs need to be redefined.
One noticeable recent historical example is, in the domain of
single-output Boolean functions, upon the introduction of the
algebraic attacks: the new constraint of having a good alge-
braic immunity has been added to the global tradeoff, and the
requirement on the values of the previously existing parameters
has been slightly lowered. In the framework of this paper,
we consider mitigation of side-attacks in addition to traditional

cryptanalytic attacks. The attacks are very unbalanced in
terms of risk, as side-channels are much more powerful and
practical than classical cryptanalyses: they can recover the
key within a few thousands of traces, whereas cryptanalyses
require more than 280 pairs of plaintext/ciphertext to succeed.
Hence, the tradeoff is clearly in favor of side-channel attacks
mitigation. Therefore, we include in our exploration S-box
constructions which may be suboptimal according to those
standards considered when only classical attacks are taken
into account. This does not make block cipher designs less
strong concretely, nor presents regression with respect to the
state-of-the-art. We simply place ourselves in the situation
of embedded cryptography which is subject to side-channel
attacks on their implementations

D. Constructions of Boolean and Vectorial
Functions for the Defender

1) Boolean Functions: In the following, we construct
Boolean functions that are optimum from a defender’s point
of view, that is, such that � f is large. We have seen with
Remark 2 a first example with an even number of variables,
using the Maiorana-McFarland construction. For obtaining
another example with an even number of variables as well,
we need to recall Dillon’s direct sum of functions [16].

Lemma 2: Let three positive integers n, r and e be such
that n = r + e. Let f (x1, . . . , xn) = g(x1, . . . , xr ) +
h(xr+1, . . . , xn), where g ∈ Br and h ∈ Be. For any β ∈ F

n
2 ,

we have:
1) W f (β) = Wg(β ) · Wh(β ),
2) r f (β) = rg(β ) · rh(β ),

where β = (β , β ) ∈ F
r
2 × F

e
2 with β  = (β1, . . . , βr ) and

β  = (βr+1, . . . , βk).
Construction 5: Let n ≥ 6 be an even number such that

n = r + e for odd numbers r, e ≥ 3. Let g ∈ Br and h ∈
Be be Boolean functions constructed by Construction 1 (resp.
Construction 2). We consider the function f (x1, . . . , xn) =
g(x1, . . . , xr ) + h(xr+1, . . . , xn).

Proposition 5: The function f defined in Construction 5
satisfies � f = 2n.

Proof: This result directly follows from Lemma 2, since
we have seen that rg takes value −2r at some (nonzero) input
and rh takes value −2e at some (nonzero) input. �
The construction 5 is suitable for cryptographic applications,
as:

Proposition 6: The function f defined in Construction 5
has nonlinearity N L f = 2n−1 − 2

n
2 , is balanced and has

algebraic degree deg( f ) ≤ max
� r−1

2 , e−1
2

�
, where this latter

bound is tight in both cases.
Proof: This nonlinearity directly follows from Lemma 2

and Relation (1). Besides, f is balanced and we have deg( f )
≤ max

� r−1
2 , e−1

2

�
because in Construction 1, φ is injective

and has image a hyperplane, then it can have algebraic degree
at most r−1

2 (resp. e−1
2 ), and in Construction 2, the function

is an affine extension of a bent function in r − 1 (resp e −
1) variables, which can have algebraic degree at most r−1

2
(resp. e−1

2 ). �
In Proposition 6, all three values hold also if we let n =

r + 1, and if instead of taking h from a construction, we take

Authorized licensed use limited to: ULAKBIM UASL - Balikesir University. Downloaded on August 15,2022 at 10:21:37 UTC from IEEE Xplore.  Restrictions apply. 



212 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

a well-chosen single variable Boolean function. The following
example illustrates this situation.

Example 1. Let h(0) = 0 and h(1) = 1. Let the truth table
of g be the following:

00FFA956CC33659AF00F59A63CC3956A .

Then the truth table of f is obtained as follows:
5555AAAA99966669A5A55A5A69669699 \
AA5555AA669699695AA5A55A96666999 (11)

for which N L f = 112, � f = 256, and deg( f ) = 3.
Remark 4: Suppose there exists a balanced Boolean func-

tion g on even number r of variables for which �g = 0. Let
h be a bent function with e variables and n = r + e. Then
� f = 0 for the function f (x1, . . . , xn) = g(x1, . . . , xr ) +
h(xr+1, . . . , xn).

Hence, if one can find any balanced Boolean function g
on even number of variables r with �g = 0, then we can
construct a balanced Boolean function f on even number
n of variables with n > r such that � f = 0. However,
it seems that such balanced Boolean function g are difficult
to find and their existence is an open question after several
computer investigations. We have completed an exhaustive
search for the class of 8-variable rotation-symmetric Boolean
functions (RSBFs) for which the search space is 236 (the
number of balanced ones is ≈ 230.2) and found that the
minimum value of � f is 16. We also performed several
heuristic searches in the whole space of 8-variable Boolean
functions, which did not yield a better result.

Now let us recall Dobbertin’s iterative construction based
on normal bent functions for constructing balanced Boolean
function with very high nonlinearity, which will be employed
in our next construction.

Dobbertin’s iterative construction [17]: Let n be an even
integer no less than 4. Write n = 2t m such that t ≥ 1 and m is
an odd integer. Then a balanced Boolean function f (x, y) ∈
Bn over F

n
2 is defined by

f (x, y) =
�

f0(x, y), if x �= 0 n
2

g1(y), if x = 0 n
2

, (12)

where f0(x, y) is an arbitrary n-variable bent function with
f0(0 n

2
, y) = cst and g1 is generated by an iterative procedure

as

gi (x, y) =
�

fi (x, y), if x �= 0 n
2i+1

gi+1(y), if x = 0 n
2i+1

,
i = 1, 2, · · · (13)

where x, y ∈ F

n
2i+1

2 and in each step fi is an arbitrary n
2i -

variable bent function with fi (0 n
2i

, y) = cst . The iterative
process will continue until i = t − 1 with gt = s ∈ Bm being
a balanced m-variable Boolean function with the best known
nonlinearity and s(0) = 0.

Theorem 3 [17]: Let f be a balanced Boolean function
given by (12). Then

N L f ≥ 2n−1 − 2
n
2 + N Lg1 .

The following theorem can be easily checked.

Theorem 4: Let f be a balanced Boolean function given
by (12). Then

deg( f ) = n

2
+ deg(g1).

Corollary 3: Let n be a power of 2 and f be a balanced
Boolean function given by (12). Then

deg( f ) = n − 1.
By using the class of M-M bent functions and employing the

balanced Boolean functions generated by Dobbertin’s iterative
construction, we propose the following construction.

Construction 6: For n = 2k, we define a balanced Boolean
function f (x, y) ∈ Bn over F

n
2 as follows:

f (x, y) =
�

φ(x) · y, if x �= 0k

g(y), if x = 0k
, (14)

where x, y ∈ F
k
2, φ is a permutation on F

k
2 such that φ(0k) =

0, and g is a balanced Boolean function on F
k
2 generated by

(12) and (13).
Theorem 5: Let f be an n = 2k-variable Boolean function

generated by Construction 6, then for any (a, b) ∈ F
k
2 × F

k
2

we have

r f (a, b) =

⎧⎪⎨⎪⎩
2n if a = b = 0k

−2n + rg(b), if a = 0k, b ∈ F
k
2

2(−1)φ(a)·bWg(φ(a)), if a ∈ F
k∗
2 , b ∈ F

k
2

.

Proof: It follows from the definition of autocorrelation
function that

r f (a, b) =
�

(x,y)∈F
k
2×F

k
2

(−1) f (x,y)⊕ f (x⊕a,y⊕b) (15)

for any (a, b) ∈ F
k
2 × F

k
2. Clearly, we have r f (0k, 0k) = 2n .

We now consider the values of r f (a, b) for all (a, b) ∈ F
k
2 ×

F
k
2 \ {(0k, 0k)}. Basically, our discussion is built on the facts

that
�

x∈F
k∗
2

(−1)c·x equals −1 if c ∈ F
k∗
2 and equals 2k − 1

if c = 0k . We consider the following two cases:
[Case 1.] (a, b) ∈ {0k} × F

k∗
2 . It can be easily seen that

in this case Eq. (15) becomes

r f (a, b) =
�

(x,y)∈{0k}×F
k
2

(−1) f (0k ,y)⊕ f (0k ,y⊕b) +
�

(x,y)∈F
k∗
2 ×F

k
2

(−1) f (x,y)⊕ f (x,y⊕b)

=
�
y∈F

k
2

(−1)g(y)⊕g(y⊕b) +
�

(x,y)∈F
k∗
2 ×F

k
2

(−1)φ(x)·y⊕φ(x)·(y⊕b)

= rg(b) +
�

(x,y)∈F
k∗
2 ×F

k
2

(−1)φ(x)·b

= rg(b) + 2k
�

x∈F
k∗
2

(−1)φ(x)·b

= −2k + rg(b).
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[Case 2.] (a, b) ∈ F
k∗
2 × F

k
2. In this case, the value of

r f (a, b) of Eq. (15) becomes�
x∈{0k ,a}

y∈F
k
2

(−1) f (x,y)⊕ f (x⊕a,y⊕b)

+
�

x∈F
k
2\{0k ,a}

y∈F
k
2

(−1) f (x,y)⊕ f (x⊕a,y⊕b)

=
�
y∈F

k
2

�
(−1) f (0k ,y)⊕ f (a,y⊕b) + (−1) f (a,y)⊕ f (0k ,y⊕b)

�
+

�
x∈F

k
2\{0k ,a}

y∈F
k
2

(−1) f (x,y)⊕ f (x⊕a,y⊕b)

= 2
�
y∈F

k
2

(−1)g(y)⊕φ(a)·(y⊕b)

+
�

x∈F
k
2\{0k ,a}

y∈F
k
2

(−1)φ(x)·y⊕φ(x⊕a)·(y⊕b)

= 2(−1)φ(a)·bWg(φ(a))

+
�

x∈F
k
2\{0k ,a}

(−1)φ(x⊕a)·b �
y∈F

k
2

(−1)z·y

= 2(−1)φ(a)·bWg(φ(a)),

where z = φ(a) ⊕ φ(x ⊕ a) is nonzero for any a ∈ F
k∗
2

and x ∈ F
k
2 \ {0k, a}.

�
2) Vectorial Functions: Here again, any general construc-

tion of Boolean functions satisfying the condition seen at
Subsection III-B.1 gives a general construction of vectorial
functions satisfying the same condition. The condition of
Subsection III-B.2 is more demanding.

For n = 2k, we present a construction of (n, k)-functions
obtained by modifying (n, k)-bent vectorial functions.

Construction 7: Let n = 2k be an even integer no less
than 4 and G = (g1, g2, · · · , gk) be an (n, k)-bent vectorial
function such that gi(0k, y) = cst for all 1 ≤ i ≤ k, where
y ∈ F

k
2. Let G = (g

1, g
2, · · · , g

k) be a balanced (k, k)-
function with nonlinearity no less than 2k−1 − 2�k/2�. We
construct an (n, k)-function F whose coordinate functions fi ’s
(1 ≤ i ≤ k) are defined as follows:

fi (x, y) =
�

gi(x, y), if x �= 0k
g

i(y), if x = 0k
,

where x, y ∈ F
k
2.

It can be easily checked that every (n, k)-function generated
by Construction 7 is balanced. Further, according to the proof
of Theorem 5 we have the following result.

Proposition 7: Let n = 2k ≥ 4 be an even integer and
F be an (n, k)-function generated by Construction 7 with
gi ’s in M-M class. Then any component function f of F has
nonlinearity no less than 2n−1 − 2k−1 − 2�k/2� and � f ≤
2�(k+1)/2�+1.

Proof: For every c = (c1, c2, . . . , ck) ∈ F
k
2
∗
, we define

f = �k
i=1 ci fi , g = �k

i=1 ci gi , and g = �k
i=1 ci g

i . where

fi ’s, g’s and g
i ’s are defined in Construction 7. On the one

hand, it follows from [17] that any component function f has
nonlinearity 2n−1−2k−1− 1

2 maxa∈F
k
2
|Wg(a)| which is no less

than 2n−1 − 2k−1 − 2�k/2�, since G = (g
1, g

2, · · · , g
k) is a

balanced (k, k)-function with nonlinearity no less than 2k−1 −
2�k/2� which implies that maxa∈F

k
2
|Wg(a)| ≤ 2�(k+1)/2�.

On the other hand, similar to the proof of Theorem 5 we can
immediately get that r f (a, b) = −2n+rg(b) if a = 0k, b ∈ F

k
2

and r f (a, b) ∈ {±2Wg(a)} if a ∈ F
k∗
2 , b ∈ F

k
2. This gives

� f ≤ 2�(k+1)/2�+1. This completes the proof. �

V. SOME SPECIFIC S-BOX CONSTRUCTIONS

A. In Dimension 6

We consider the rotation-symmetric S-boxes [50] (RSSBs)
that are bijective from F

6
2 → F

6
2. In [25], using a sieving

strategy, the search space of all bijective RSSBs in dimension 6
is reduced from 247.9 to 240. The sieving strategy in [25]
is mainly based on the facts that some of the component
functions of an RSSB are the generalized k-rotation symmetric
Boolean functions [27], where k = 1, 2, and 3, and there
are some affine equivalence relations among these functions
yielding that the nonlinearity of an RSSB can be found by
computing the nonlinearities of only 13 (instead of 63) compo-
nent functions. Thanks to this, all possible candidates for some
of the 13 component functions (with nonlinearity greater than
or equal to 24) are obtained. After that, using those component
functions, all the 240 RSSBs containing them are generated and
the RSSBs with nonlinearity 24 are found efficiently (as it is
enough to find the nonlinearities of the remaining component
functions to find the nonlinearity of an RSSB). It is found
in [25] that there are 23102464 × 12 (≈ 228) RSSBs with
nonlinearity 24 (known maximal nonlinearity) and, among
them, the number of those with differential uniformity 4 (there
is only one example [5] with differential uniformity 2 in the
literature) is 2332288 × 12 (≈ 224.7).

We have checked that among them there are only four
(up to the affine equivalence) that are optimum in terms of
the defender’s objective (i.e., minc∈F

6
2
∗ �c·F = 64 for each

S-box F). However, these S-boxes (given in Appendix A) are
quadratic.

Let Qk : F26 → F26 denote the polynomial representation
S-box # k, where k = 1, 2, 3, and 4. Using a normal
basis, the representations are obtained as follows by Lagrange
interpolation:
Q1(α) = α24+α40+α44+α48+α52+α55 + α56 + α61 + α63

Q2(α) = α44 + α47 + α52 + α54 + α55 + α59 + α62

Q3(α) = α30+α31+α40+α48+α55+α56 + α59 + α61 + α63

Q4(α) = α28 + α30 + α32 + α47 + α60 + α61 + α63

Considering the APN S-box in dimension 6 [5], we find
that it is very weak from defender’s point of view. Among
the 63 component functions, 28 of them have non-absolute
indicator value 8 (which is the minimum possible) and the
rest non-absolute indicator value 16. Notice that among these
component functions, the minimum algebraic degree is 3 and
the maximum algebraic degree is 4.
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TABLE III

DIFFERENTIALLY-4 UNIFORM PERMUTATIONS WITH THE BEST KNOWN NONLINEARITY 2n−1 − 2
n
2

TABLE IV

CRYPTOGRAPHIC PROPERTIES OF THE S-BOXES IN DIMENSION 8 GENERATED FROM THE CONSTRUCTIONS IN TABLE III

B. In Dimension 8

Some well-known constructions generating permutations in
dimension 8 with differential uniformity 4 and nonlinearity
2n−1 − 2

n
2 are given in III, where tr k

1 (α) for α ∈ F2k is the
trace function from F2k to F2 defined by tr k

1 (α) = �k−1
i=0 α2i

.
In Table IV, the value of mini � fi is computed along with the
other cryptographic properties. It is seen from Table IV that
the worst value is 32 among these constructions. Specifically,
for the inverse function we find that � fi (d) = 32 for each
coordinate function fi . We have performed some heuristics
in the class of RSSBs, in order to find the bijective S-boxes
having maxi � fi < 32. Note that RSSBs are affine equivalent
to the S-boxes obtained from the (sum of ) power maps and
most of the known constructions correspond to some power
maps, e.g. the inverse function. The search yielded bijective
RSSBs for which maxi � fi (d) = 24 < 32, hence worse
than the constructions in Table III in terms of the defender’s
objective.

Remark 5: It is shown that the nonlinearity of an RSSB
is bounded above by the nonlinearity of f , where f is the
coordinate function defining the RSSB, see [36] for more
details. It can be easily checked that this property is also true

for � f . This could maybe ease the search of RSSB with good
� f in higher dimensions. We leave this as a topic for future
research.

VI. DISCUSSION

A. Practical Evaluation

The strength of a side-channel attack can be measured by its
probability of success [53, §3.1]. It is defined as the probability
of the event k̂ = k∗, where:

• k∗ is the actual secret key, and
• k̂ is the key guessed (recall (2)) by the optimal

side-channel distinguisher, which consists in maximizing
the probability of the observations knowing the assumed
model for the given keys (recall (4)).

This probability can be estimated as a success rate by repeating
several independent attacks. In addition, the standard deviation
of the success probability can also be estimated, as that of a
Bernoulli distribution [33].

We compare in this section the result of the optimal
distinguisher (which, by definition, maximizes the success
probability) for various S-boxes, namely:

• The worst (from an attacker standpoint) Boolean function
(5555-6999) displayed in Eqn. (11).
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TABLE V

PROPERTIES OF STUDIED S-BOXES (DIFFERENTIAL UNIFORMITY COMPARES BETWEEN RESP. CASES 1, 2, 5 AND CASES 3, 4)

• The optimal (from an attacker standpoint) Boolean func-
tion (18CA-9029) displayed in Eqn. (9).

• The LSB of x �→ x101 in F256, seen as F2[X]/�X8+X4+
X3+X +1� (S-box also used as an example in [23, §4.3]);
this S-box has average properties regarding side-channel
attacks, hence should be regarded as a representative
average case.

• The LSB of the AES [44] S-box (nicknamed
SubBytes), which is x �→ 63 + 8fx127 + b5x191 +
01x223 +f4x239 +25x247 +f9x251 +09x253 +05x254.
This S-box is renown as very relevant from a
cryptographic point of view, hence it should be
considered as a representative for the best case.

• The 2nd-LSB of SAFER [37] Exponentiating S-box,
namely x �→ 45x mod 257 (except that the output is taken
to be 0 if the modular result is 256, which occurs for input
x = 128). It has � f = 256.

The properties of these S-boxes are gathered in Table V.
The superiority of the function (9) over the LSB (and also

other bits—not shown) of AES can be seen in Fig. 3. In this
figure, the success rate has been computed based on 1 mil-
lion acquisition campaigns. Each campaign is independent
and has been carried our on 20 side-channel measurements
(or 20 traces).

Without surprise, all curves start, for no side-channel trace
(Q = 0), at success probability 2−n = 1/256. The success
probability is then increasing with the number of traces Q > 0.
We observe that:

• The attack on the optimal Boolean function (18CA-9029)
is even more favorable to an attacker than that of the LSB
of AES S-box;

• The attack on the worst Boolean function (5555-6999)
results in the smallest success rate (for a given number
of traces Q), and furthermore feature ties, hence the
asymptotic success rate of 1/2 when Q → +∞. The
same behavior is observed for f equal to SAFER expo-
nentiating S-box 2nd-LSB, which also has � f = 256.

Notice that the curves in Fig. 3 are equipped with error bars.
Those are intentionally narrow, owing to the large number of
attacks to validate the success rate with great accuracy.

Notice that the attack success rate for Boolean function
(18CA-9029) is unambiguously greater (though not a lot) than
that corresponding to the attack on the AES SubBytes LSB.
The greater success rate for the new S-box is illustrated in the
inset at top left corner of Fig. 3, where it is clear that the error

Fig. 3. Success rate of attack without noise for various S-boxes, and inset
magnification on a portion where the new S-box is successfully attacked faster
than AES S-box.

bars at ±σ do not interpenetrate, hence the new 8×8 S-box is
strictly more favorable to the attacker than that of AES. This
analysis reveals that the AES S-Box is not the worst with
respect to side-channel analysis. However, it is not that far
from being the worst, thus we recommend that designers resort
to protection schemes, such as leakage balancing (hiding) or
S-box randomization (masking) [34, Chap. 7 & 9].

Same conclusions hold in the presence of measurement
noise, as shown in Fig. 4. Information-theoretical analysis [15,
Theorem 1, Eqn. (4) & (5)] allows to derive two bounds
on the minimum number of traces for succeeding a key
extraction irrespective of the attack method. These bounds are
superimposed on the graph (for σ = 1, since the bound does
not work for σ = 0). The bounds are clearly close to the
actual success rates on attacks instantiated on S-boxes (and
all the closer as � f is small), which confirms that S-boxes
are relevant and critical architectural blocks as targets to
side-channel attacks within block ciphers.

B. Critical Analysis

Let us mention some remaining open problems.
First, the existence of balanced 8 × 8 S-boxes with � = 8

is an open problem.
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Fig. 4. Success rate of attack with noise for various S-boxes and attack
bounds, with similar inset magnification as in Fig. 3.

Second, we have suggested some constructions of S-boxes
which, in addition to the customarily criteria, need to optimize
the component’s auto-correlation. Our constructions 1-4 all
yield semi-bent functions, which feature linear structures, that
should be avoided in block ciphers. This is the case also for
Construction 5: since it is based on the direct sum, it generates
decomposable functions, which also have linear structures
and are vulnerable to divide-and-conquer attacks. There is
therefore room for further better tradeoffs.

Third, our examples range over some well-known construc-
tion methods, but there is no guarantee that our analysis is
covering all S-boxes. Therefore, new designs can be imagined.

Fourth, Remark 3 provides balanced Boolean functions f
with � f = 0, but they are of low algebraic degree. A
more general question would be that of finding the maximum
achievable degree of an n-variable balanced Boolean function
with � f = 0.

Eventually, S-boxes are usually protected against
side-channel attacks by their random masking. Provable
computation of masked S-boxes resort to the interpolation
of their truth table by a Lagrange polynomial. In order to
minimize the computational overhead, S-boxes which can
be interpolated by small polynomials are preferred. The
complexity is quantified by the number of multiplications [1]
when evaluating the polynomial. Therefore, another challenge
is to find suitable S-boxes which in addition also meet this
criterion.

VII. CONCLUSION

It is well-known that S-boxes are appealing targets for
side-channel attacks on cryptographic algorithms. Indeed, they
allow to distinguish clearly between the correct key and erro-
neous key guesses. Considering the most powerful attacker,
we derive that exploited property of the S-box is the (signed)
auto-correlation of its components. We therefore consider
the question to know which S-box is the easiest (harder)
to attack with side-channel analysis. Interestingly, we show
that some S-boxes exist which maximize (resp. minimize)
the side-channel attack efficiency. Leveraging known S-box

constructions, we put forward S-boxes with optimal values
in terms of components auto-correlation. Namely, we provide
concrete instantiations for 6- and 8-bit S-Boxes. Our S-boxes
have two applications: first, they are interesting per se as
objects which shall be considered in the context of facing
both cryptanalysis and side-channel attacks. Second, they
allow to validate in which respect some security bounds
on side-channel attacks are close to the “easiest attackable”
S-boxes (in termes of side-channel analysis).
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APPENDIX

A. Truth Table for the Four Found RSSB S-Boxes F
6
2 → F

6
2

S-box
# 1:
0, 3, 6, 29, 12, 8, 58, 38, 24, 27, 16, 11, 53, 49, 13, 17, 48,

2, 54, 28, 32, 21, 22, 59, 43, 25, 35, 9, 26, 47, 34, 15, 33, 46,
4, 19, 45, 37, 56, 40, 1, 14, 42, 61, 44, 36, 55, 39, 23, 41, 50,
20, 7, 62, 18, 51, 52, 10, 31, 57, 5, 60, 30, 63
S-box

# 2:
0, 10, 20, 48, 40, 26, 33, 61, 17, 27, 52, 16, 3, 49, 59, 39,

34, 38, 54, 28, 41, 21, 32, 50, 6, 2, 35, 9, 55, 11, 15, 29, 5,
24, 13, 62, 45, 8, 56, 51, 19, 14, 42, 25, 1, 36, 37, 46, 12, 31,
4, 57, 7, 44, 18, 23, 47, 60, 22, 43, 30, 53, 58, 63
S-box

# 3:
0, 10, 20, 29, 40, 26, 58, 11, 17, 27, 52, 61, 53, 7, 22, 39,

34, 38, 54, 49, 41, 21, 59, 4, 43, 47, 14, 9, 44, 16, 15, 48, 5,
46, 13, 37, 45, 62, 35, 51, 19, 56, 42, 2, 55, 36, 8, 24, 23, 50,
31, 57, 28, 1, 18, 12, 25, 60, 32, 6, 30, 3, 33, 63
S-box

# 4:
0, 10, 20, 58, 40, 31, 53, 38, 17, 27, 62, 16, 43, 28, 13, 30,

34, 55, 54, 7, 61, 21, 32, 44, 23, 2, 56, 9, 26, 50, 60, 48, 5,
29, 47, 19, 45, 8, 14, 15, 59, 35, 42, 22, 1, 36, 25, 24, 46, 41,
4, 39, 49, 11, 18, 12, 52, 51, 37, 6, 57, 3, 33, 63
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