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Abstract—In this paper, graph attention network (GAT) is
firstly utilized for the channel estimation. In accordance with
the 6G expectations, we consider a high-altitude platform station
(HAPS) mounted reconfigurable intelligent surface-assisted two-
way communications and obtain a low overhead and a high
normalized mean square error performance. The performance of
the proposed method is investigated on the two-way backhauling
link over the RIS-integrated HAPS. The simulation results
denote that the GAT estimator overperforms the least square
in full-duplex channel estimation. Contrary to the previously
introduced methods, GAT at one of the nodes can separately
estimate the cascaded channel coefficients. Thus, there is no
need to use time division duplex mode during pilot signaling
in full-duplex communication. Moreover, it is shown that the
GAT estimator is robust to hardware imperfections and changes
in small scale fading characteristics even if the training data do
not include all these variations.

Index Terms—Reconfigurable intelligent surfaces, channel
estimation, graph attention networks, high-altitude platform
station systems.

I. INTRODUCTION

As the state-of-the-art reflective surface, reconfigurable
intelligent surfaces (RISs) pave the way for a low-cost promis-
ing technology improving the spectral efficiency and energy
efficiency in wireless networks [1, 2]. Since RISs are able
to manipulate the amplitude and/or phase of the impinging
signal, they can substantially nullify the randomness of the
propagation medium. However, to do these, a RIS-assisted
wireless communication system strictly requires high-quality
channel state information (CSI). Moreover, channel estimation
is getting much more complex for RIS-assisted two-way
communications, which has been proposed in [3–5] recently.
Also, since the coefficients of channels (i.e., core network
(CN) to RIS and RIS to base station (BS)) must be acquired
for each channel induced by meta-atoms, the increasing
number of elements significantly raises the overhead of the
communication and leads to decrease in the efficiency. This
study focuses on developing a channel estimation method for
RIS-assisted full-duplex communications without the need to
activate time division duplex (TDD) mode during channel
estimation as well as providing lightweight overhead.

In this study, we will focus on a 6G compliant sce-
nario, specifically look into vertical heterogeneous network
(V-HetNet) architecture. The V-HetNet is an emerging net-
work topology including geostationary and low-earth orbit
satellites, and high-altitude platform station (HAPS) systems
along with terrestrial communication links to serve a large
number of small cells with the goals of ubiquitous connectiv-
ity and user-centric communication [6]. The HAPS systems,

network nodes operating at an altitude of about 20 km in
the stratosphere, are the key enablers of the V-HetNets. Due
to the properties of the stratosphere, a HAPS can remain
in an almost stationary position and can provide ubiquitous
connectivity [7]. One of the main uses of HAPS systems
is to serve backhauling due to the high cost of fiber optic
infrastructure [8, 9]. Many reflective surfaces can be deployed
on a HAPS thanks to their large surface area in order to enable
high capacity communication [10].

Considering the variations in the channel characteristics ob-
served by the receiving nodes in HAPS communication due to
scatterers, and clouds, the cascaded channel estimation in full-
duplex RIS-assisted HAPS communication is challenging and
requires the novel approaches which are robust to changes in
the channel characteristics as well as hardware impairments.
Below, we provide a solution to this problem by proposing
the graph attention network (GAT) channel estimator.

A. Related Works

A few works (e.g., [3–5]) investigate RIS-assisted two-
way communications. In [3], the phase shifts are optimized
to maximize the minimum signal-to-noise ratio (SNR). The
phase shifts and source precoders are jointly optimized in
order to maximize the system sum rate in full-duplex multiple-
input multiple-output (MIMO) communications [4, 5]. They
reveal the upper bound performances of the proposed systems
because they assume that channels are perfectly predicted,
which is not the case in practice. One should note that
channels need to be estimated precisely in order to perform
self-interference cancellation in full-duplex communication.
The majority of channel estimation methods are not suitable
for RIS-assisted full-duplex communications owing to their
high computational cost and/or expense of more overhead.

The prominent channel estimation methods proposed for
unidirectional RIS-assisted communications are mentioned
below, and the main drawbacks that are possibly experienced
during channel estimation even in TDD mode are discussed.
Some of the existing methods assume that only a single meta-
atom is active at a given time period [11, 12]. This method
is called on-off state control, which is time-consuming for a
massive number of meta-atoms and allows utilizing the small
portion of the elements due to a few active elements at a time
even though utilizes deep learning (DL) [12]. Furthermore,
this method hampers the synchronization of meta-atoms since
the channel coefficients probably change when the last one is
estimated. Therefore, the synchronization is spoiled by this
switching delay. At this point, an extra algorithm or method
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is required to recover the synchronization error between meta-
atoms. Obviously, this new recovery algorithm would increase
the computational complexity and time delay. As RISs are
composed of massive passive scattering elements, they are not
able to estimate the channel coefficients on their own. Some
methods, such as given by [13], propose channel estimation
using RISs with active elements at the cost of destroying this
attractive feature of RISs. In this approach, RISs are used
with active sensors, which are equipped with baseband signal
processing units for channel estimation. On the other hand,
the channel estimation methods proposed in [14] with massive
element RISs do not seem feasible since their computational
complexity is proportional to the cube of the number of
RIS elements (i.e., O(N3)). Frankly, these methods are not
capable to acquire both channel states in RISs-assisted full-
duplex communications. To the best knowledge of the authors,
there is not any channel estimation method directly focusing
on full-duplex communications, yet. Furthermore, unlike ex-
isting deep learning methods, we incorporate the GATs to
minimize the computational complexity [15] and increase the
learning rate by handling unseen nodes within the proposed
RIS-assisted full-duplex communication system.

Even though fiber optic communications are conventionally
utilized in backhaul connectivity, building fiber optic infras-
tructure for small cells is mostly costly solution [16]. Recently,
HAPS systems have been proposed to deal with the cost of
backhaul connectivities [9]. Therefore, we consider a two-way
RIS-assisted HAPS backhauling by considering the prominent
features of HAPS backhauling [17] and RIS-enhanced two-
way communications [3] for an example application of the
proposed GAT channel estimator.

B. Contributions
The main contributions of this study are two-fold and can

be summarized as follows:
• To the best of the authors’ knowledge, this study firstly

investigates a channel estimation method performing at
only one of the nodes which transmit their data over
full-duplex wireless communication links in order to
acquire the coefficients for both channels as illustrated
in Fig. 1. In virtue of the proposed channel estimation
method, there is no need to switch half-duplex instead
of full-duplex when estimating channels. Another crucial
point is that this method does not need an on-off state
control, which is a time-consuming approach in the
channel estimation method proposed in the previous
studies owing to the capability of acquiring all channel
coefficients regarding the elements of RIS.

• This study considers GAT in channel estimation (even
in wireless communications) for the first time. Owing to
the attention mechanism in GAT, the proposed system
is robust against changes in channel parameters even if
the network is trained under different and better channel
conditions.

Note that the proposed method can be easily revised to
be used for multi-user and/or MIMO RIS-assisted wireless
communication scenarios. For instance, it is thought that
it may be sufficient to expand the label vector to include
channels related to each antenna for channel estimation in
RIS-assisted MIMO. It should be highlighted that the method
can be also utilized in half-duplex systems by limiting the
label vector with only single channel coefficients. Moreover,
it should be emphasized that the proposed channel estimation
method can be also applied to the channel estimation problems
other than RIS-assisted HAPS communications.

Fig. 1. Full-duplex backhaul communication from BS to CN supported by
RIS-assisted HAPS.

C. Outline

The remainder of this work first addresses the mathematical
background and channel estimation for RIS-assisted full-
duplex communication in Section II. Section III provides
the basic mathematical background for GATs. Next, in Sec-
tion IV, the GAT channel estimator and the channel estimation
methodology are introduced. Section V presents the numerical
and simulation results with discussions regarding the proposed
GAT estimator and least square (LS). Finally, Section VI
concludes this study.

II. RIS-ASSISTED FULL-DUPLEX COMMUNICATIONS

A considered two-way backhaul network including two
end nodes, namely CN and a BS1, supported by a RIS-
assisted HAPS is denoted in Fig. 1. Each end node transmits
their information at the same time via the RIS which has
N passive elements. Due to long range between nodes and
possible obstacles, it can be assumed that the direct link
between nodes is negligibly weak. Therefore, the direct link
is ignored in this study. Furthermore, the channels CN-to-
RIS and RIS-to-BS can be assumed reciprocal if the nodes
transmit within a coherence interval and the antennas on the
nodes are placed closely. Under the reciprocity assumption,
it can be said that ht = hr = h and gt = gr = g,
where h and g are channel coefficient vectors such that
h = [h1, h2, . . . , hN ] g = [g1, g2, . . . , gN ]. Each fading
coefficient for the wireless channel between CN and the n-
th element of RIS is denoted hn = αne

−jϕn . Similarly, the
channel coefficient for the second channel is gn = βne

−jψn .
For both ground-to-HAPS and HAPS-to-ground channels,
the magnitudes of channel coefficients can be assumed to
follow the Rician distribution [18]. As each node transmits
concurrently, the received signal at the node CN can be given
as

y1(t) =
√
P2

(
N∑
n=1

gnκe
j(θn−ψn−ϕn)hn

)
s2(t) + e1(t)

+
√
P1

(
L∑
n=1

hnκe
j(θn−2ϕn)hn

)
s1(t) + w1(t),

(1)

1This node can also be considered as a user equipment.
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where the first term is desired signal; κ and θn denote
amplitude gain and the adjustable phase shift at n-th element
of RIS, respectively.

√
P1 and

√
P2 stand for the received

powers of the CN and BS, respectively. The nodes CN and BS
simultaneously transmit symbols s1(t) and s2(t), which are
the pilot symbols in this study. e1(t) and w1(t) are the residual
loop interference and additive white Gaussian noise (AWGN)
at CN; can be assumed to be distributed with CN

(
0, σ2

e1

)
[19]

and CN
(
0, σ2

w1

)
, respectively. For the simplicity, the phase

shifts created by the RIS can be denoted with a diagonal
matrix, Θ ∈ CN×N , as

Θ = diag
{
κejθ1 , . . . , κejθN

}
. (2)

Then, (1) can be rewritten as

y1(t) =
√
P2h

TΘgs2(t) +
√
P1h

TΘhs1(t) + e1(t) + w1(t),
(3)

where hTΘhs1(t) is the self-interference. Similar to y1(t),
the received signal at BS is given as

y2(t) =
√
P1g

TΘhs1(t) +
√
P2g

TΘgs2(t) + e2(t) + w2(t).
(4)

To express the received signal in terms of channel estima-
tion terminology better, the received pilot symbols at CN for
the transmitted pilot symbols, s1 ∈ C1×M , can be restated as
follows

y1 =
√
P2gΘhs2 +

√
P1h

TΘhs1 + e1 + w1, (5)

where, y1, e1, w1 ∈ C1×M and hT,gT ∈ C1×N . Regarding
the received pilot symbols, the instantaneous SNR related to
the estimation of h at CN can be given as

γ1,h =
|
√
P2gΘhs2|◦2

|e1|◦2 + |w1|◦2
, (6)

where (·)◦2 denotes the Hadamard square. The LS estimation
for h is defined as

ĥ =
(
STS

)−1
STy1

T, (7)

where

S =

 s1(1) s1(1) . . . s1(1)
...

. . .
...

s1(M) s1(M) . . . s1(M)

 . (8)

normalized mean square error (NMSE) is given as

NMSE =
‖h− ĥ‖22
‖h‖22

, (9)

where ‖ · ‖2 represents the Euclidean norm.

III. THE GRAPH ATTENTION NETWORKS

While conventional DL methods such as convolutional
neural networks are successful on data that exhibit a grid-
like structure, they cannot show high performance on data
in the irregular domain. Graph neural networks can produce
state-of-the-art solutions for problems involving data that
do not have a grid-like structure. In addition, the attention
mechanism provides a very suitable structure for inductive
learning, so that the trained network can be generalized over
unobserved graphs. Therefore, GATs can be considered as
an emerging healer in channel estimation where the observed

data frequently changes because of the random nature of the
propagation medium. The mathematical background of GATs
is detailed below.

A set of P nodes which is an input to the graph attention
layer (GAL) is defined as ϑ =

{
~ϑ1, ~ϑ2, . . . , ~ϑP

}
, ~ϑi ∈

RF , where F denotes the number of features for each
node. GAL outputs a set of node features as ϑ′ ={
~ϑ′1,

~ϑ′2, . . . ,
~ϑ′P

}
, ~ϑ′i ∈ RF ′

, where F ′ denotes the number
of features for each output nodes and might have different
cardinality than the former. A shared linear transformation
parameterized by the weight matrix, W ∈ RF×F ′

, is ap-
plied to each node to transform input properties to higher-
level properties. Thereafter, the self-attention on the nodes is
investigated by an attention mechanism a : RF ′ × RF ′ → R,
which computes the attention coefficients as

cij = a
(
W~ϑi,W~ϑj

)
, (10)

where cij is found for only the j-th node which has neigh-
borhood of i-th node in the graph. The attention coefficients
show the importance of features of j-th node on the i-th
node. To make the coefficients comparable in a different
neighborhood, they are then normalized using the softmax
function as follows [20]

αij = softmaxj (cij) =
exp (cij)∑

k∈Ni
exp (cik)

, (11)

where Ni denotes the neighborhood of the i-th node. The
normalized coefficients, αij , are computed by the attention
mechanism a as [15]

αij =
exp

(
ReLU

(
a> [(XW)i‖(XW)j ]

))∑
k∈N (i) exp (ReLU (a> [(XW)i‖(XW)k]))

, (12)

where a ∈ R2F ′
and X ∈ RP×F denote attention kernel and

node features, respectively. Finally, the convolution over the
graph network is performed as

Z = αXW + b, (13)

where b is the trainable bias vector. This layer accepts inputs
which are the node attributes matrix X ∈ RP×F , binary
adjacency matrix A ∈ {0, 1}P×P , and edge attributes matrix
E ∈ RP×P×S .

As stated in [21], a pooling layer is required to generalize
graph convolution networks. Furthermore, to reduce the num-
ber of representations, a pooling layer is employed. Thus, the
pooling layer enables the network to avoid overfitting. Since
this study utilizes global attention pooling, we do not refer to
other graph pooling layers here. The global attention pooling
layer computes

X′ =
P∑
i=1

(σ (XW1 + b1)� (XW2 + b2))i , (14)

where σ and � are the sigmoid function and the broadcasted
elementwise product, respectively.

IV. FULL-DUPLEX CHANNEL ESTIMATION

In this section, we introduce a channel estimation procedure
using GAT for two-way backhaul over RIS-assisted HAPS as
illustrated in Fig. 1. As aforementioned, it is required that
channel estimation should be carried out without switching
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y1

y1

s1

y1
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s1

Fig. 2. The illustration for the proposed graph attention network including
two consecutive graph attention networks and global attention pooling. The
real and imaginary parts of received signal, y1, are assigned to attributes of
two nodes. The edge attributes are set as the pilot symbols, s1.

TABLE I
SUMMARY OF THE DATASET PARAMETERS EMPLOYED DURING TRAINING

AND TEST.

Parameters Training Test

PN Polynomial x4 + x2 + 1 x4 + x2 + 1
Modulation BPSK BPSK
# of Samples per SNR 1000 500
SNR (dB) -30:2:0 -30:2:10
K 10 0, 4, 8, 10, 12
M 16, 32, 64, 128 16, 32, 64, 128
N 128, 256, 512, 1024 128, 256, 512, 1024
ε 0 0, 1e-1, 1e-2, 1e-3

RIS elements on-off and be robust against hardware imperfec-
tions and serious fluctuations in channel characteristics. GATs
can be generalized to completely unobserved graphs during
the training [15]; therefore, it is an appropriate solution to the
channel estimation problem. Considering the random nature
of the wireless propagation medium and that RIS cannot
manipulate random behavior during the channel estimation,
a generalizable model or procedure is required for accurate
channel estimation in order to avoid performance degrada-
tion in estimation when channel characteristics significantly
change. In consequence, GATs are utilized in this study to
obtain all channel parameters regarding RIS elements in a
one-shot that is to say without consecutive on-off switch for
each element on RIS.

A. Training Dataset Generation

Instead of using TDD mode during pilot signaling, we
consider remaining two-way communications when channel
estimation is performed. Hence, we can define the problem
as estimation of h and g from y1 at node CN. Similary, the
same problem can be defined for the node BS; however, we
consider only y1 for the estimation of h and g.

Firstly, the M -length pilot symbols are created as pseudo-
noise (PN) sequence utilizing the polynomial given by x4 +
x2 + 1. Utilizing PN sequence also enables the nodes and
HAPS to make synchronous, which is demanded by a proper
wireless communications. In this study, s1 and s2 are selected
same. Then, this pilot symbols are received at CN after
reflected from RIS with N meta-atoms. P1 and P2 are chosen
as unit power. During pilot signaling, all elements of RIS can
switch on without any phase shift, scilicet unitary phase shift
matrix, Θ. In other word, κ = 1. As the scatterers which are
close to ground stations are required to be considered [22],
we assume that both channels depicted in Fig. 1 follow Rician
fading with K = 10. By using these parameters, the training
dataset is generated. The input regarding received signal, X,
is created as follows:

X = [Re{y1}; Im{y1}] . (15)

TABLE II
THE PROPOSED GAT LAYOUT AND PARAMETERS.

Layers Dimensions

Inputs
X 2×M
A 2× 2

E 2× 2×M
Labels y 2N × 1

Graph Attention 1 2× 128
Graph Attention 2 2× 32

Global Attention Pool 128
Dense 2N

Parameters Values
Activation ReLU
Optimizer Adam

Loss MSE
Learning Rate 1e-3

L2 Regularization 5e-4

The adjacency matrix for the graph network denoting the real
and imaginary parts of channel coefficient is given as

A =

[
0 1
1 0

]
, (16)

which implies that two nodes are connected with a single
edge as illustrated in Fig. 2. The known pilot symbols are
assigned to weight of the edge for the k-th nonzero element
of adjacency matrix as

Ek = s1, E ∈ C2×2×M . (17)

Also, the label vector related to these inputs is defined as

y = [h1, h2, · · · , hN , g1, g2, · · · , gN ]
T
. (18)

The training dataset includes 1000 input samples for each
SNR value in between -30 dB and 0 dB with 2 dB step. The
chosen SNR interval allows proper RIS-assisted communica-
tions in terms of bit error rate as seen in [1]. The training
dataset totally consists of 16000 input samples for each M ,
N , and SNR values. The dataset is divided into two parts,
which are used for training and validation with the rate of
4 : 1. The parameters which are used during the training
dataset generation are summarized in Table I.
B. GAT Model and Training

In Section III, the background for GATs is visited. In this
section, we introduce the parameters and details related to
the proposed GAT model. Two consecutive GALs are used to
learn the channel parameters over the graph structure detailed
before. The first one has 128 output channels while the latter
has 32. In two layers, ReLU activation function is employed.
Considering the dataset regarding channel estimation problem,
the dimensions of inputs now become as P = 2, F =M , and
S = M . Besides GALs, a global attention pooling layer is
employed in order to reduce the number of representations
and thus avoid the network overfitting. To keep away the
network from overfitting problem, the dropout in both GALs
with the rate of 0.5 and L2 regularization are utilized. The
network is terminated by a hidden layer with 2N neurons.
The optimizer and loss function are chosen as ADAM with
the learning rate of 10−3 and mean square error (MSE). We
utilize Spektral [23] in the implementation of graph neural
network, namely GAT. The number of epochs is set to 20,
but early stopping is activated if there is no improvement in
the loss for 5 epochs. The parameters for the GAT and inputs
are summarized in Table II.
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h - LS

N = 128, 256, 512, 1024
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Fig. 3. NMSE performance of the proposed GAT-aided full-duplex channel
estimation versus the SNRs and the number of RIS elements, N , for M =
128, K = 10 and ε = 0. The proposed method can estimate the channel
coefficients, h and g, with almost the same performance at CN.
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M = 16

M = 32

M = 64

M = 128

N = 1024

N = 512

N = 256

N = 128

Fig. 4. NMSE performance of the proposed GAT-aided full-duplex channel
estimation versus the SNRs, the number of RIS elements, N , and the number
of pilot symbols, M , for K = 10 and ε = 0.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the channel estimation performance of the
GAT model, the details of which are given in the previous
section, is investigated under different scenarios. Firstly, we
consider the full-duplex channel estimation performances for
both h and g in Fig. 3. The proposed GAT estimator out-
performs LS estimation where TDD is not activated. Both
methods show the same NMSE performance with about 3 dB
of SNR loss when the number of RIS elements is doubled and
the number of pilot symbols is kept constant (i.e. M = 128).
Although the estimation procedure is carried out at only
CN2, Fig. 3 denotes almost the same performance for both
channels, which shows that the main purpose of this study
is successfully achieved. Since NMSE performance for two

2The same GAT can be used at BS without any change in the parameters
and architecture.

-30 -25 -20 -15 -10 -5 0 5 10

SNR (dB)

10-5

100

105

1010

N
M

S
E

K = 0

K = 4

K = 8

K = 12

K = 10

N = 1024

N = 1024

N = 128

N = 128

LS

GAT

Fig. 5. NMSE performance of the proposed GAT-aided full-duplex channel
estimation versus the SNRs, the number of RIS elements, N , and the Rician
K-factor for M = 128 and ε = 0. The proposed method is able to remain
almost the same performance under the effect of changing fading.
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SNR (dB)
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100
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1010
N

M
S

E

 = 1e-3

 = 1e-2

 = 1e-1

 = 0

N = 128

N = 1024

LS

N = 128

N = 1024

GAT

Fig. 6. NMSE performance of the proposed GAT-aided full-duplex channel
estimation versus the SNRs, the number of RIS elements, N , and switching
error, ε, for M = 128 and K = 10. The proposed method is able to
remain almost the same performance under the effect of changing hardware
imperfection.

channel estimations are almost identical, only NMSE results
for h are given hereafter to increase the readability of the
figures. It should be noted that although SNR values between
0 and 10 dB are not included in the training set, the proposed
method can make channel estimation with high performance
at these SNR values.

Also, we investigate the channel estimation performance
jointly for the number of pilot symbols and the number of
RIS elements as seen in Fig. 4. It is observed that the increase
in the number of pilot symbols does not make a significant
difference in NMSE performance except for the maximum
achievable performance limit at the high SNR region. The
main reason behind these results is that the attention mecha-
nism used in this DL network can focus on the most relevant
part of inputs when making a decision, as stated in [15]. In
the light of the results, it can be said that the GAT estimator
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can reduce the overhead for channel estimation. On the other
hand, increasing the number of channel coefficients required
to be estimated slightly deteriorates the NMSE performance.
As said before, when the number of meta-atoms is doubled,
the system needs 3 dB more SNR to remain the same NMSE
performance.

As the value of K is dependent on the propagation envi-
ronment, for instance, it can be observed that K is lower in
urbanized regions where many scatterers are usually found
(vice versa in rural areas). Furthermore, it should be noted
that the HAPS movement or displacement can give rise to
change in the platform elevation angle; thereby, the value of
K changes with the variation in the elevation angle [18].
In consequence, it is important to test the performance of
the channel estimation method according to the small scale
fading factor. In Fig. 5, the trained GAT model is tested under
varying K values even though the network is trained with only
K = 10. While the LS estimator’s performance degrades in
the case that there is no line-of-sight link, GAT estimator is
able to show satisfactory NMSE performance regardless of K
values. This is another finding that GATs can be successful
in different inputs.

Although the reflection coefficients of RIS elements are
assumed as 1, which means perfect reflector, it should be
noted that they cannot completely reflect the power of an
incident wave. Thus, we consider the imperfection in the
amplitude gain of RISs by introducing an error, ε, such that
κ = 1− ε as in [12]. The network which is trained under the
ideal amplitude condition is tested for ε = 10−3, 10−2, 10−1.
As expected, Fig. 6 presents that the LS estimator is not
affected from the error in amplitude gain. The GAT pro-
vides much better channel estimation performance than LS.
Moreover, its performance is not degraded when changing the
amplitude gain of RIS. To speak generally, Fig. 6 denotes the
robustness of the proposed channel estimation method against
the hardware imperfections.

The attention mechanism in graph convolutional networks,
pooling, and regularization used in the proposed GAT channel
estimator help ensure robustness and high performance as
shown in the results above. Noted that the proposed system
can be utilized for the channel estimation in half-duplex
communications as well. For example, g and h are separately
estimated at CN and BS, respectively when TDD mode is
activated.

VI. CONCLUDING REMARKS

In this study, we propose a channel estimation method
utilizing GAT which can be generalized over unobserved
graph structures in the virtue of the attention mechanism. The
proposed method does not require on-off state control and can
estimate the coefficients of two main channel blocks of the
RIS-assisted communication system at the same time with
a high performance. GAT estimator’s NMSE performance
is studied in the scenario full-duplex backhauling over RIS-
integrated HAPS.

The simulation results reveal that the proposed method
has remarkably high performance. Furthermore, thanks to
the attention mechanism and graph structure, the estimator
is able to maintain its performance under different channel
conditions and hardware impairments which are not seen by
the network during the training. Besides full-duplex channel

estimation, the GAT estimator can also be employed in half-
duplex communications and multi-user systems as well as
MIMO systems by modifying the label vector in the training
phase.
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