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1. Introduction

To find relationships between the extrinsic and intrinsic invariants of a submanifold has been very popular problems in 
the last twenty five years. The first study in this direction was started by B.-Y. Chen in 1993. He established some inequalities 
between the main extrinsic (the squared mean curvature) and main intrinsic invariants (the scalar curvature and the Ricci 
curvature, or the delta-invariant δ (2)) of a submanifold in a real space form [6]. In 1999, Chen also established a relation 
between the Ricci curvature and the squared mean curvature for a submanifold [7]. After that, many papers have been 
published by various authors in different ambient spaces. In 2011, Chen published a book which consists of all studies in 
these directions [10]. The topic is still very popular and there are many new papers related to the inequalities which are 
introduced by Chen. For example see [1], [3], [4], [7], [15], [16], [17], [18], [21] and [23].

Let (M, g) and 
(

B, g′) be m and b-dimensional Riemannian manifolds, respectively. A Riemannian submersion π : M → B
is a mapping of M onto B such that π has a maximal rank and the differential π∗ preserves the lengths of the horizontal 
vectors [19]. In [8], Chen proved a simple optimal relationship between Riemannian submersions and minimal immersions. 
In [9], Chen considered the equality case of the inequality obtained in [8]. In [2], Alegre, Chen and Munteanu established a 
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sharp relationship between the δ-invariants and Riemannian submersions with totally geodesic fibers. In [22], Şahin intro-
duced anti-invariant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds. In [13], Küpeli, 
Murathan and in [14], Lee introduced anti-invariant submersions from Sasakian manifolds. In [12], Gülbahar, Meriç and Kılıç 
obtained sharp inequalities involving the Ricci curvature for invariant Riemannian submersions.

Motivated by the above studies, in the present study, we consider anti-invariant Riemannian submersions from Sasakian 
manifolds onto Riemannian manifolds. We obtain sharp inequalities involving the Ricci curvature and the scalar curvature.

The paper is organized as follows: In Section 2, we give a brief introduction about Sasakian manifolds and submersions. 
We give some lemmas which will be used in Section 3 and Section 4. In Section 3, we obtain some inequalities involving 
the Ricci curvature and the scalar curvature on the vertical and horizontal distributions for anti-invariant Riemannian sub-
mersions from Sasakian space forms. The equality cases are also discussed. In Section 4, we prove Chen-Ricci inequalities on 
the vertical and horizontal distributions for anti-invariant Riemannian submersions from Sasakian space forms. We find re-
lationships between the intrinsic and extrinsic invariants using fundamental tensors. The equality cases are also considered.

2. Preliminaries

Let π : M → B be a Riemannian submersion. We put dim M = 2m + 1 and dim B = b. For x ∈ B , Riemannian submanifold 
π−1 (x) with the induced metric g is called a fiber and denoted by M . A vector field on M is called vertical, if it is tangent 
to fibers and horizontal, if it is orthogonal to fibers. We notice that the dimension of each fiber is always (2m + 1 − b) = r
and dimension of the horizontal distribution is b = (2m + 1 − r). In the tangent bundle T M of M , the vertical and horizontal 
distributions of M are denoted by V (M) and H (M), respectively. We call a vector field X on M projectable, if there exists a 
vector field X∗ on B such that π∗

(
Xp

) = X∗π(p) for each p ∈ M . In this case, we call that X and X∗ are π -related. A vector 
field X on M is called basic, if it is projectable and horizontal ([19] and [20]). For each p ∈ M the vertical and horizontal 
spaces in T p M are denoted by Vp (M) and Hp (M), respectively.

The tensor fields T and A of type (1,2) are defined by

T E F = h∇υEυ F + υ∇υEhF

and

AE F = h∇hEυ F + υ∇hEhF ,

respectively.
Denote by R , R ′ , R̂ and R∗ the Riemannian curvature tensors of Riemannian manifolds M , B , the vertical distribution V

and the horizontal distribution H, respectively. Then the Gauss-Codazzi type equations are given by

R (U , V , F , W ) = R̂ (U , V , F , W ) + g (TU W , T V F ) − g (T V W , TU F ) , (2.1)

R (X, Y , Z , H) = R∗ (X, Y , Z , H) − 2g (A X Y , A Z H)

+ g (AY Z , A X H) − (A X Z , AY H) , (2.2)

R (X, V , Y , W ) = g ((∇X T ) (V , W ) , Y ) + g ((∇V A) (X, Y ) , W )

− g (T V X, T W Y ) + g (AY W , A X V ) , (2.3)

where

π∗
(

R∗ (X, Y ) Z
) = R ′ (π∗ X,π∗Y )π∗ Z

for any X, Y , Z , H ∈H (M) and U , V , F , W ∈ V (M) [19].
Moreover, the mean curvature vector field H of any fiber of Riemannian submersion π is given by

H = rN, N =
r∑

j=1

TU j U j,

where {U1, ..., Ur} is an orthonormal basis of the vertical distribution V . Furthermore, π has totally geodesic fibers if T
vanishes on H (M) and V (M) [19].

Now we give the following lemmas:

Lemma 2.1. [11] Let (M, g) and 
(

B, g′) be Riemannian manifolds admitting a Riemannian submersion π : M → B. For E, F , G ∈ T M, 
we have

g (T E F , G) = −g (F , T E G) ,

g (AE F , G) = −g (F , AE G) .

That is, AE and T E are anti-symmetric with respect to g.
2
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Lemma 2.2. [11] Let (M, g) and 
(

B, g′) be Riemannian manifolds admitting a Riemannian submersion π : M → B.
(i) For U , V ∈ V (M),

TU V = T V U ;
(ii) For X, Y ∈H (M) , A X Y = −AY X.

For more details for Riemannian submersions see also [24].
Let (M, φ, ξ,η, g) be a (2m + 1)-dimensional contact metric manifold. If in a contact metric manifold,

∇Xξ = −φ X, (∇Xφ) Y = g (X, Y ) ξ − η (Y ) X,

then (M,∇, g, φ, ξ,η) is called a Sasakian manifold [5], where ∇ denotes the Levi-Civita connection of g . A plane section 
π in T M is called a φ-section, if it is spanned by X and φ X , where X is a unit tangent vector field orthogonal to ξ . The 
sectional curvature of a φ-section is called a φ-sectional curvature. A Sasakian manifold with constant φ-sectional curvature 
c is said to be a Sasakian space form [5] and is denoted by M(c). The curvature tensor R of M(c) is expressed by

R(X, Y )Z = c + 3

4
[g(Y , Z)X − g(X, Z)Y ] + c − 1

4
[η(X)η(Z)Y

− η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y , Z)η(X)ξ + g(φY , Z)φ X

− g(φ X, Z)φY − 2g(φ X, Y )φ Z ]. (2.4)

Definition 2.1. [13] Let (M,∇, g, φ, ξ,η) be a Sasakian manifold and 
(

B, g′) a Riemannian manifold. A Riemannian submer-
sion π : M → B is called anti-invariant, if V (M) is anti-invariant with respect to φ, i.e. φ (V (M)) ⊆H (M).

Let π : (M,∇, g, φ, ξ,η) → (
B, g′) be an anti-invariant Riemannian submersion from a Sasakian manifold (M, ∇, g, φ,

ξ, η) to a Riemannian manifold 
(

B, g′). From Definition 2.1, we have φ (V (M))∩H (M) 	= {0}. We denote the complementary 
orthogonal distribution to φ (V (M)) in H (M) by μ. Then we have

H (M) = φ (V (M)) ⊕ μ.

Suppose that ξ is vertical. It is easy to see that μ is an invariant distribution of H (M) under the endomorphism φ. Thus 
for X ∈H (M), we write

φ X = B X + C X,

where B X ∈ V (M) and C X ∈ χ (μ) [13].
Suppose that ξ is horizontal. It is easy to see that μ = φμ ⊕ {ξ}. Thus for X ∈H (M), we write

φ X = B X + C X,

where B X ∈ V (M) and C X ∈ χ (μ) [13].

Lemma 2.3. [13] Let π : M → B be an anti-invariant Riemannian submersion from a Sasakian manifold (M,∇, g, φ, ξ,η) to a 
Riemannian manifold 

(
B, g′).

(i) If ξ is vertical, then C2 X = −X − φB X;
(ii) If ξ is horizontal, then C2 X = −X + η (X) ξ − φB X.

Example 2.1. [5] Let us take M =R2m+1 with the standard coordinate functions (x1, ..., xm, y1, ..., ym, z), the contact struc-
ture η = 1

2 (dz − ∑m
i=1 yidxi), the characteristic vector field ξ = 2 ∂

∂z and the tensor field φ given by

φ =
⎡⎢⎣ 0 δi j 0

−δi j 0 0

0 y j 0

⎤⎥⎦ .

The Riemannian metric is g = η⊗η+ 1
4

m∑
i=1

(
(dxi)

2 + (dyi)
2
)
. Then 

(
M2m+1, φ, ξ,η, g

)
is a Sasakian space form with constant 

φ-sectional curvature c = −3 and it is denoted by R2m+1(−3). The vector fields

Ei = 2
∂

∂ yi
, Ei+m = φ Xi = 2(

∂

∂xi
+ yi

∂

∂z
), 1 ≤ i ≤ m, ξ = 2

∂

∂z
,

form a g-orthonormal basis for the contact metric structure.
3
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Example 2.2. [13] We consider M =R5(−3) with the structure given in Example 2.1. The Riemannian metric gR2 is given 
by

gR2 = 1

8

[
1 0

0 1

]
on R2. Let π :R5(−3) →R2 be a map defined by

π (x1, x2, y1, y2, z) = (x1 + y1, x2 + y2) .

Then

V (M) = sp {V 1 = E1 − E3, V 2 = E2 − E4, V 3 = E5 = ξ}
and

H (M) = sp {H1 = E1 + E3, H2 = E2 + E4} .

So π is a Riemannian submersion. Moreover, φV 1 = H1, φV 2 = H2, φV 3 = 0 imply that φ(V (M)) = H (M). Hence π is an 
anti-invariant Riemannian submersion such that ξ is vertical.

Example 2.3. [13] We consider M = R5(−3) with the structure given in Example 2.1. Let N = R3 − {
(y1, y2, z) ∈ R3 |

y2
1 + y2

2 ≤ 2
}

. The Riemannian metric tensor gN is given by

gN = 1

4

⎡⎢⎣
1
2

y1 y2
2 − y1

2
y1 y2

2
1
2 − y2

2

− y1
2 − y2

2 1

⎤⎥⎦
on N . Let π :R5(−3) → N be a map defined by

π (x1, x2, y1, y2, z) =
(

x1 + y1, x2 + y2,
y2

1

2
+ y2

2

2
+ z

)
.

Then

V (M) = sp {V 1 = E1 − E3, V 2 = E2 − E4}
and

H (M) = sp {H1 = E1 + E3, H2 = E2 + E4, H3 = E5 = ξ} .

So π is a Riemannian submersion. Moreover, φV 1 = H1, φV 2 = H2 imply that φ(V (M)) ⊂ H (M) = φ(V (M)) ⊕ {ξ}. Hence 
π is an anti-invariant Riemannian submersion such that ξ is horizontal.

3. Inequalities for anti-invariant Riemannian submersions

In the present section, we aim to obtain some inequalities involving the Ricci curvature and the scalar curvature on the 
vertical and horizontal distributions for anti-invariant Riemannian submersions from Sasakian space forms. We shall also 
consider the equality cases of these inequalities.

Using (2.4) and (2.1), we have

R̂ (U , V , F , W ) = c + 3

4
{g (V , F ) g (U , W ) − g (U , F ) g (V , W )}

+ c − 1

4
{η (U )η (F ) g (V , W ) − η (V )η (F ) g (U , W )

+ η (V )η (W ) g (U , F ) − η (U )η (W ) g (V , F ) + g (φV , F ) g (φU , W )

− g (φV , W ) g (φU , F ) − 2g (W , φF ) g (φU , V )}
− g (TU W , T V F ) + g (T V W , TU F ) . (3.1)

Similarly, from (2.4) and (2.2), we get
4
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R∗ (X, Y , Z , H) = c + 3

4
{g (Y , Z) g (X, H) − g (X, Z) g (Y , H)}

+ c − 1

4
{η (X)η (Z) g (Y , H) − η (Y )η (Z) g (X, H)

+ η (Y )η (H) g (X, Z) − η (X)η (H) g (Y , Z) + g (φY , Z) g (φ X, H)

− g (φY , H) g (φ X, Z) − 2g (H, φ Z) g (φ X, Y )}
+ 2g (A X Y , A Z H) − g (AY Z , A X H) + (A X Z , AY H) . (3.2)

Let (M(c), g), 
(

B, g′) be a Sasakian space form and a Riemannian manifold, respectively and π : M(c) → B an anti-invariant 
Riemannian submersion. Furthermore, for each point p ∈ M , let {U1, ..., Ur, X1, ..., Xn} be an orthonormal basis of T p M(c)
such that Vp (M) = span {U1, ..., Ur}, Hp (M) = span {X1, ..., Xn}.

Case I: Assume that ξ is vertical.
For the vertical distribution, in view of (3.1), since π is anti-invariant and ξ is vertical, with the use of U1 = U , we find

R̂ic (U ) = c + 3

4
(r − 1) g (U , U ) + c − 1

4

{
(2 − r)η (U )2 − g (U , U )

}
− rg (TU U , H) +

r∑
j=1

g
(
TU j U , TU U j

)
.

Hence we obtain the following proposition:

Proposition 3.1. Let π : M(c) → B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rie-
mannian manifold 

(
B, g′) such that ξ is vertical. Then

R̂ic (U ) ≥ c + 3

4
(r − 1) − c − 1

4

{
(r − 2)η (U )2 + 1

}
− rg (TU U , H) .

The equality case of the inequality holds for a unit vertical vector U ∈ Vp (M(c)) if and only if each fiber is totally geodesic.

Similarly, in view of (3.1), using the symmetry of T , we have

2τ̂ = c + 3

4
r (r − 1) + c − 1

4
(2 − 2r) − r2 ‖H‖2 +

r∑
i, j=1

g
(
TUi U j, TUi U j

)
,

where τ̂ = ∑
1≤i< j≤r

R̂
(
Ui, U j, U j, Ui

)
. Then we can write

2τ̂ ≥ c + 3

4
r (r − 1) − c − 1

2
(r − 1) − r2 ‖H‖2 .

The equality case of the inequality holds if and only if T = 0, which means that each fiber is totally geodesic. Thus we can 
state the following proposition:

Proposition 3.2. Let π : M(c) → B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rie-
mannian manifold 

(
B, g′) such that ξ is vertical. Then

2τ̂ ≥ c + 3

4
r (r − 1) − c − 1

2
(r − 1) − r2 ‖H‖2 .

The equality case of the inequality holds if and only if each fiber is totally geodesic.

For the horizontal distribution, in view of (3.2), since π is anti-invariant and ξ is vertical, using the anti-symmetry of A, 
we find

2τ ∗ = c + 3

4
n (n − 1)

+
n∑

i, j=1

[
3 (c − 1)

4
g
(
C Xi, X j

)
g
(
C Xi, X j

) − 3g
(

A Xi X j, A Xi X j
)]

. (3.3)

By the use of Lemma 2.3, we obtain
5
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2τ ∗ = c + 3

4
n (n − 1) + 3

4
(c − 1) (n + tr (φB)) −

n∑
i, j=1

3g
(

A Xi X j, A Xi X j
)
.

Then we can write

2τ ∗ ≤ c + 3

4
n (n − 1) + 3

4
(c − 1) (n + tr (φB)) , (3.4)

where τ ∗ = ∑
1≤i< j≤n

R∗ (
Xi, X j, X j, Xi

)
. The equality case of (3.4) holds if and only if A = 0, which means that the horizontal 

distribution is integrable. So we can state the following result:

Proposition 3.3. Let π : M(c) → B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rie-
mannian manifold 

(
B, g′) such that ξ is vertical. Then

2τ ∗ ≤ c + 3

4
n (n − 1) + 3

4
(c − 1) (n + tr (φB)) .

The equality case of (3.4) holds if and only if H(M) is integrable.

Case II: Assume that ξ is horizontal.
From (3.1), since π is anti-invariant submersion, after some computations, we have

2τ̂ = c + 3

4
r (r − 1) − r2 ‖H‖2 +

r∑
i, j=1

g
(
TUi U j, TUi U j

)
.

Hence we can state the following proposition:

Proposition 3.4. Let π : M(c) → B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rie-
mannian manifold 

(
B, g′) such that ξ is horizontal. Then

2τ̂ ≥ c + 3

4
r (r − 1) − r2 ‖H‖2 .

The equality case of the inequality holds if and only if each fiber is totally geodesic.

For the horizontal distribution, from (3.2), since ξ is horizontal and A is anti-symmetric, after some computations, we 
have

2τ ∗ = c + 3

4
n (n − 1) +

n∑
i, j=1

[
c − 1

4

{
2 − 2n + 3g

(
C Xi, X j

)
g
(
C Xi, X j

)}
− 3g

(
A Xi X j, A Xi X j

)]
.

Then using Lemma 2.3, we obtain

2τ ∗ = c + 3

4
n (n − 1) + c − 1

4
(3trφB + n − 1) −

n∑
i, j=1

3g
(

A Xi X j, A Xi X j
)
,

where τ ∗ = ∑
1≤i< j≤n

R∗ (
Xi, X j, X j, Xi

)
.

So we can state the following result:

Proposition 3.5. Let π : M(c) → B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rie-
mannian manifold 

(
B, g′) such that ξ is horizontal. Then

2τ ∗ ≤ c + 3

4
n (n − 1) + (c − 1)

4
(3tr (φB) + n − 1) .

The equality case of the inequality holds if and only if H(M) is integrable.
6
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4. Chen-Ricci inequalities for anti-invariant Riemannian submersions

In this section, we aim to obtain Chen-Ricci inequality on the vertical and horizontal distributions for anti-invariant Rie-
mannian submersions from a Sasakian space forms onto a Riemannian manifold. The equality cases will be also considered.

Let (M(c), g) be a Sasakian space form and 
(

B, g′) a Riemannian manifold. Assume that π : M(c) → B is an anti-invariant 
Riemannian submersion and {U1, ..., Ur, X1, ..., Xn} is an orthonormal basis of T p M(c) such that Vp(M) = span{U1, ..., Ur}, 
Hp(M) = span {X1, ..., Xn}. Now we denote T s

i j by

T s
i j = g

(
TU i U j, Xs

)
, (4.1)

where 1 ≤ i, j ≤ r and 1 ≤ s ≤ n (see [12]).
Similarly, we denote Aα

i j by

Aα
i j = g

(
A Xi X j, Uα

)
, (4.2)

where 1 ≤ i, j ≤ n and 1 ≤ α ≤ r. From [12], we use

δ (N) =
n∑

i=1

r∑
k=1

g
((∇Xi T

)
Uk

Uk, Xi

)
. (4.3)

Case I: Assume that ξ is vertical.
Then from (3.1), we have

2τ̂ = c + 3

4
r (r − 1) − c − 1

2
(r − 1) − r2 ‖H‖2 +

r∑
i, j=1

g
(
TUi U j, TUi U j

)
.

Using (4.1) in the last equality and the symmetry of T , we can write

2τ̂ = c + 3

4
r (r − 1) − c − 1

2
(r − 1) − r2 ‖H‖2 +

n∑
s=1

r∑
i, j=1

(
T s

i j

)2
. (4.4)

We know from [12] that

n∑
s=1

r∑
i, j=1

(
T s

i j

)2 = 1

2
r2 ‖H‖2 + 1

2

n∑
s=1

[
T s

11 − T s
22 − ... − T s

rr

]2

+ 2
n∑

s=1

r∑
j=2

(
T s

1 j

)2 − 2
n∑

s=1

r∑
2≤i< j≤r

[
T s

ii T
s
j j −

(
T s

i j

)2
]

. (4.5)

So using (4.5) in (4.4), we get

2τ̂ = c + 3

4
r (r − 1) − c − 1

2
(r − 1)

− 1

2
r2 ‖H‖2 + 1

2

n∑
s=1

[
T s

11 − T s
22 − ... − T s

rr

]2

+ 2
n∑

s=1

r∑
j=2

(
T s

1 j

)2 − 2
n∑

s=1

r∑
2≤i< j≤r

[
T s

ii T
s
j j −

(
T s

i j

)2
]

.

Then from the last equality, we have

2τ̂ ≥ c + 3

4
r (r − 1) − c − 1

2
(r − 1)

− 1

2
r2 ‖H‖2 − 2

n∑
s=1

r∑
2≤i< j≤r

[
T s

ii T
s
j j −

(
T s

i j

)2
]

. (4.6)

Furthermore, from (2.1), taking U = W = Ui , V = F = U j and using (4.1), we can write
7
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2
∑

2≤i< j≤r

R
(
Ui, U j, U j, Ui

) = 2
∑

2≤i< j≤r

R̂
(
Ui, U j, U j, Ui

)
+ 2

n∑
s=1

∑
2≤i< j≤r

[
T s

ii T
s
j j −

(
T s

i j

)2
]

.

In view of the last equality, (4.6) can be written as

2τ̂ ≥ c + 3

4
r (r − 1) − c − 1

2
(r − 1) − 1

2
r2 ‖H‖2

+ 2
∑

2≤i< j≤r

R̂
(
Ui, U j, U j, Ui

) − 2
∑

2≤i< j≤r

R
(
Ui, U j, U j, Ui

)
. (4.7)

Then using the equality

2τ̂ = 2
∑

2≤i< j≤r

R̂
(
Ui, U j, U j, Ui

) + 2
r∑

j=1

R̂
(
U1, U j, U j, U1

)
, (4.8)

in view of (4.7), we have

2R̂ic (U1) ≥ c + 3

4
r (r − 1) − c − 1

2
(r − 1)

− 1

2
r2 ‖H‖2 − 2

∑
2≤i< j≤r

R
(
Ui, U j, U j, Ui

)
.

Since M is a Sasakian space form, its curvature tensor R satisfies the equality (2.4). So we obtain

R̂ic (U1) ≥ c + 3

4
(r − 1) + c − 1

4

{
(2 − r)η (U1)

2 − 1
}

− 1

4
r2 ‖H‖2 .

Hence we state the following theorem:

Theorem 4.1. Let π : M(c) → B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rieman-
nian manifold 

(
B, g′) such that ξ is vertical. Then

R̂ic (U1) ≥ c + 3

4
(r − 1) − c − 1

4

{
(r − 2)η (U1)

2 + 1
}

− 1

4
r2 ‖H‖2 .

The equality case of the inequality holds if and only if

T s
11 = T s

22 + ... + T s
rr,

T1 j = 0, j = 2, ..., r.

On the other hand, using (4.2) and Lemma 2.3, the equation (3.3) can be rewritten as

2τ ∗ = c + 3

4
n (n − 1) + 3

4
(c − 1) (n + tr (φB)) − 3

r∑
α=1

n∑
i, j=1

(
Aα

i j

)2
.

Since A is anti-symmetric on H (M(c)), the above equality turns into

2τ ∗ = c + 3

4
n (n − 1) + 3

4
(c − 1) (n + tr (φB))

− 6
r∑

α=1

n∑
j=2

(
Aα

1 j

)2 − 6
r∑

α=1

∑
2≤i< j≤n

(
Aα

i j

)2
. (4.9)

Furthermore, from (2.2), taking X = H = Xi , Y = Z = X j and using (4.2), we have

2
∑

2≤i< j≤n

R
(

Xi, X j, X j, Xi
) = 2

∑
2≤i< j≤n

R∗ (
Xi, X j, X j, Xi

)
+ 6

r∑
α=1

∑
2≤i< j≤n

(
Aα

i j

)2
. (4.10)
8
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If we consider the last equality in (4.9), then we get

2τ ∗ = c + 3

4
n (n − 1) + 3

4
(c − 1) (n + tr (φB)) − 6

r∑
α=1

n∑
j=2

(
Aα

1 j

)2

+ 2
∑

2≤i< j≤n

R∗ (
Xi, X j, X j, Xi

) − 2
∑

2≤i< j≤n

R
(

Xi, X j, X j, Xi
)
.

Since M is a Sasakian space form, its curvature tensor R satisfies the equality (2.4). Then we have

2Ric∗ (X1) = c + 3

2
(n − 1) + 3

4
(c − 1)‖C X1‖2

− 6
r∑

α=1

n∑
j=2

(
Aα

1 j

)2
.

So we can write

Ric∗ (X1) ≤ c + 3

2
(n − 1) + 3

4
(c − 1)‖C X1‖2 .

Hence we obtain the following theorem:

Theorem 4.2. Let π : M(c) → B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rieman-
nian manifold 

(
B, g′) such that ξ is vertical. Then

Ric∗ (X1) ≤ c + 3

4
(n − 1) + 3

4
(c − 1)‖C X1‖2 .

The equality case of the inequality holds if and only if

A1 j = 0, j = 2, ...,n.

Now, we compute the Chen-Ricci inequality between the vertical and horizontal distributions for the case of ξ is vertical. 
For the scalar curvature τ of M(c), we obtain

2τ =
n∑

s=1

Ric (Xs, Xs) +
r∑

k=1

Ric (Uk, Xk) ,

2τ =
r∑

j,k=1

R
(
U j, Uk, Uk, U j

) +
n∑

i=1

r∑
k=1

R (Xi, Uk, Uk, Xi)

+
n∑

i,s=1

R (Xi, Xs, Xs, Xi) +
n∑

s=1

r∑
j=1

R
(
U j, Xs, Xs, U j

)
. (4.11)

Since M(c) is a Sasakian space form, using (4.11) and (2.4), we find

2τ = c + 3

4
(r (r − 1) + n (n − 1) + 2nr) + c − 1

4
(4 (r − 1) + n + 3trφB) . (4.12)

On the other hand, from the Gauss-Codazzi type equations (2.1), (2.2) and (2.3), we have

2τ = 2τ̂ + 2τ ∗ + r2 ‖H‖2 +
r∑

k, j=1

g
(
TUk U j, TUk U j

)
+ 3

n∑
i,s=1

g
(

A Xi Xs, A Xi Xs
) −

n∑
i=1

r∑
k=1

g
((∇Xi T

)
Uk

Uk, Xi

)

+
n∑

i=1

r∑
k=1

{
g
(
TUk Xi, TUk Xi

) − g
(

A Xi Uk, A Xi Uk
)} −

n∑
s=1

r∑
j=1

g
((∇Xs T

)
U j

U j, Xs

)

+
n∑

s=1

r∑
j=1

{
g
(
TU j Xs, TU j Xs

) − g
(

A Xs U j, A Xs U j
)}

. (4.13)
9
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Using (4.5) and (4.3), we get

2τ = 2τ̂ + 2τ ∗ + 1

2
r2 ‖H‖2 − 1

2

n∑
s=1

[
T s

11 − T s
22 − ... − T s

rr

]2

− 2
n∑

s=1

r∑
j=2

(
T s

1 j

)2 + 2
n∑

s=1

r∑
2≤ j<k≤r

[
T s

j j T
s
kk −

(
T s

jk

)2
]

+ 6
r∑

α=1

n∑
s=2

(
Aα

1s

)2

+ 6
r∑

α=1

∑
2≤i<s≤n

(
Aα

is

)2 +
n∑

i=1

r∑
k=1

{
g
(
TUk Xi, TUk Xi

) − g
(

A Xi Uk, A Xi Uk
)}

− 2δ (N) +
n∑

s=1

r∑
j=1

{
g
(
TU j Xs, TU j Xs

) − g
(

A Xs U j, A Xs U j
)}

.

By making use of (4.8), (4.10) and (4.12) in the last equality, we obtain

c + 3

2
nr + c − 1

2
(3 (r − 1) − n)

+ 2
r∑

k=1

R (U1, Uk, Uk, U1) + 2
n∑

s=1

R (X1, Xs, Xs, X1)

= 2R̂ic (U1) + 2Ric∗ (X1) + 1

2
r2 ‖H‖2 − 1

2

n∑
s=1

[
T s

11 − T s
22 − ... − T s

rr

]2

− 2
n∑

s=1

r∑
j=2

(
T s

1 j

)2 + 6
r∑

α=1

n∑
s=2

(
Aα

1s

)2 +
n∑

i=1

r∑
k=1

{
g
(
TUk Xi, TUk Xi

) − g
(

A Xi Uk, A Xi Uk
)}

− 2δ (N) +
n∑

s=1

r∑
j=1

{
g
(
TU j Xs, TU j Xs

) − g
(

A Xs U j, A Xs U j
)}

.

We denote∥∥∥T V
∥∥∥2 =

n∑
i=1

r∑
k=1

g
(
TUk Xi, TUk Xi

)
and ∥∥∥AH

∥∥∥2 =
n∑

i=1

r∑
k=1

g
(

A Xi Uk, A Xi Uk
)
,

(see [12]).
Since (M(c), g) is a Sasakian space form, from (2.4), we obtain the following theorem:

Theorem 4.3. Let π : M(c) → B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rieman-
nian manifold 

(
B, g′) such that ξ is vertical. Then

c + 3

4
{nr + n + r − 2} + c − 1

4

{
3r − 4 − n − (r − 2)η (U1)

2 + 3‖C X1‖2
}

≤ R̂ic (U1) + Ric∗ (X1) + 1

4
r2 ‖H‖2

+ 3
r∑

α=1

n∑
s=2

(
Aα

1s

)2 − δ (N) +
∥∥∥T V

∥∥∥2 −
∥∥∥AH

∥∥∥2
.

The equality case of the inequality holds if and only if

T s
11 = T s

22 + ... + T s
rr,

T1 j = 0, j = 2, ..., r.

Case II: Assume that ξ is horizontal.
From (3.1), similar to Theorem 4.1, we can state the following theorem:
10
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Theorem 4.4. Let π : M(c) → B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rieman-
nian manifold 

(
B, g′) such that ξ is horizontal. Then

R̂ic (U1) ≥ c + 3

4
(r − 1) − 1

4
r2 ‖H‖2 .

The equality case of the inequality holds if and only if

T s
11 = T s

22 + ... + T s
rr,

T1 j = 0, j = 2, ..., r.

From (3.2), similar to Theorem 4.2, we have the following theorem:

Theorem 4.5. Let π : M(c) → B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rieman-
nian manifold 

(
B, g′) such that ξ is horizontal. Then

Ric∗ (X1) ≤ c + 3

4
(n − 1) + c − 1

4

{
(2 − n)η (X1)

2 − 1 + 3‖C X1‖2
}

.

The equality case of the inequality holds if and only if

A1 j = 0, j = 2, ...,n.

Now, we compute the Chen-Ricci inequality between the vertical and horizontal distributions for the case of ξ is hori-
zontal. Since ξ is horizontal, from (4.11), we find

2τ = c + 3

4
[r (r − 1) + n (n − 1) + 2nr] + c − 1

4
[n + 3trφB + 4r − 7] .

Using the above equation, (4.13), (4.5), (4.8), (4.10) and (4.3), we get

c + 3

2
nr + c − 1

2
(2r − 3)

+ 2
r∑

k=1

R (U1, Uk, Uk, U1) + 2
n∑

s=1

R (X1, Xs, Xs, X1)

= 2R̂ic (U1) + 2Ric∗ (X1) + 1

2
r2 ‖H‖2 − 1

2

n∑
s=1

[
T s

11 − T s
22 − ... − T s

rr

]2

− 2
n∑

s=1

r∑
j=2

(
T s

1 j

)2 + 6
r∑

α=1

n∑
s=2

(
Aα

1s

)2 − 2δ (N)

+
n∑

s=1

r∑
j=1

{
g
(
TU j Xs, TU j Xs

) − g
(

A Xs U j, A Xs U j
)}

+
n∑

i=1

r∑
k=1

{
g
(
TUk Xi, TUk Xi

) − g
(

A Xi Uk, A Xi Uk
)}

.

Hence in view of (2.4), we obtain the following theorem:

Theorem 4.6. Let π : M(c) → B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rieman-
nian manifold 

(
B, g′) such that ξ is horizontal. Then

c + 3

4
{nr + n + r − 2} + c − 1

4

{
2r − 4 − (n − 2)η (X1)

2

+ 3‖C X1‖2
}

≤ R̂ic (U1) + Ric∗ (X1) + 1

4
r2 ‖H‖2

+ 3
r∑

α=1

n∑
s=2

(
Aα

1s

)2 − δ (N) +
∥∥∥T V

∥∥∥2 −
∥∥∥AH

∥∥∥2
.

11
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The equality case of the inequality holds if and only if

T s
11 = T s

22 + ... + T s
rr,

T1 j = 0, j = 2, ..., r.
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