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Abstract Recently, it is important to try to understand diseases with large mortality rates
worldwide, such as infectious disease and cancer. For this reason, mathematical modeling
can be used to comment on diseases that adversely affect all people. So, this paper discuss
mathematical model presented for the first time that examines the interaction between immune
system and cancer cells by adding IL-12 cytokine and anti-PD-L1 inhibitor. The proposed
ordinary differential new mathematical model is studied by considering in term of Caputo and
Caputo–Fabrizio (CF) derivative. Stability analysis, existence, and uniqueness of the solution
is examined for Caputo fractional derivative. Then numerical simulations of ordinary and
fractional differential new mathematical model are given. It is obtained that a reduction
(20%–80%) of the number of cancer cells for Caputo derivative and (100%) of the number
of cancer cells for CF derivative. The reduction is one of the most important aspects of the
new fractional model for the order discussed especially obtained for CF derivative.

1 Introduction

Cancer is a disease which arises from changes in the genes as a result of DNA damage under
the effects of factors such as gender, age, genetics, lifestyle, malnutrition, stress, cigarette
and alcohol consumption. This disease, especially in its advanced stages, requires a difficult
process to be treated. Because of the fact that people who get cancer or people who die from
cancer is increasing day by day it is frequently seen in the research topics of recent days.
Among these studies, the interaction between cancer cells and immune system components
which consists of tissues and organs, the defense mechanism of the body, has an important
place. By the help of its ability to regulate immunity responses, one of the most important
parts of the immune system, dendritic cells, reports the presence of cancer cells to CD4+T
cells in order for the body to prepare itself to harmful cells and what’s more stimulates
IL-12 cytokine. CD4+T cells takes the important steps for the body to protect itself and
notifies CD8+T cells and also stimulates IL-2 cytokine production. The purpose of IL-2 is
to increase the proliferation of both CD4+T and CD8+T lymphocytes. IL-12 is to increase
cytotoxic properties of CD8+T cells which is responsible for killing tumors by attacking
them. In this way, immune system components try to protect the body from harm. However,
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Fig. 1 Figures about cancer cells can escape from the immune system and the effect of anti-PD-L1

due to the ability of cancers cells to hide from these protective components, this order may
not be effective in reducing cancer cells.

As seen in Fig. 1a cancer cells, as a result of the interaction between PD-1 protein which is
expressed (the transformation process of genes to proteins) on the surface of T lymphocytes,
and PD-L1 protein which is expressed on cancer cell surfaces, can escape from the immune
system and inhibit the activation of T lymphocytes [1,2].

Recently, anti-PD-L1 inhibitors have been used, in order to increase T cell activation [3]
and stop cancer cells escaping from the immune system and to ensure that the immune system
can recognize and destroy these cells, as we see Fig. 1b.

Many scientists have studied complex structured tumors, tumor growth and the interaction
between the tumor and immune system by using mathematical models. [4–6] is among the
sources examining the relationship between tumor and immune system cells between mathe-
matical modeling and [7–9] is among the sources investigating the interaction between tumor
and normal cells. Using mathematical modeling Kirschner and Panetta [10] examine tumor
cells, immune system cells and cytokine IL-2 interaction, while Pillis et al. [11–13] inves-
tigated of tumor growth by using immune system components such as IL-2 concentration,
CD8+T cells, natural killer (NK) cells and total circulating lymphocytes. Castiglione-Piccoli
[14] study the interaction between CD4+T and CD8+T lymphocytes, cancer cells, dendritic
cells, and cytokine IL-2, and [15] examines the model with fractional derivative and gives
numerical results.

Recently, [16–18] are among the studies examining the cancer-immune system mathemat-
ical model, one of the immune system components, especially anti-PD-L1 inhibitors, others
lymphocytes, cytokines. By this motivation, IL-12 cytokine due to its ability to increase
the number of CD4+T, CD8+T lymphocytes, and the anti-PD-L1 inhibitor due to its help
at increasing the effect of CD8+T cells are added Castiglione–Piccoli mathematical model
given in [14]. Thus, a new time-dependent ordinary differential system, which is organized
as follows, has been obtained.

dH

dt
= a0 + b0DH

(
1 − H

f0

)
+ λ42

I2
K2 + I2

H

(
1 − H

f0

)
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K12 + I12
H

(
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)
− c0H,
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)
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)
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dD

dt
= −d3DC,

dI2
dt

= b4DH − e4 I2C − c4 I2,

dI12

dt
= λDI12

D − dI12 I12,

dZ

dt
= −γ Z (1)

where

F = cpd − 1

π

(
tan−1 (

(Z − 1) kpd
) + π

2

)

is given in [18]. The fight of immune system components against cancer cells is modeled with
Eq. (1), which is obtained by adding IL-12 and anti-PD-L1 to immune system components.
The purpose of adding new variables in Eq. (1) is for the immune system to fight cancer cells
more effectively.

In this paper, the modified ordinary differential system, in which H , C , M , D, I L − 2,
I L−12 and Z symbolize CD4+T and CD8+T lymphocytes, cancer cells, dendritic cells, IL-2
and IL-12 cytokine, anti-PD-L1, respectively, will be examined in the paper using fractional
calculus (FC), as the memory and inheritance effect is important in mathematical models
used to understand natural phenomenon. Some of the applications related to FC, which have
attracted attention in scientific fields such as biology in recent years, is given with [15]
and [19–35]. HIV/HCV coinfection model, a new chaotic system, COVID-19 epidemics
model, rubella disease model, HIV transmission model, computer virus propagation with
kill signals model, tuberculosis model, smoking epidemic model, 2019-nCOV epidemic
outbreaks model, cancer treatment model, model of the deathly disease in pregnant women,
smoking model, computer worm model, glucose–insulin regulatory system are studied with
fractional derivative in [19–32], respectively. [33,34] emphasize that the solution methods
discussed for the problem working on are applicable and practical. [35] set up a new formula
for fractional derivative with Mittag-Leffler kernel. This paper is organized as follows; In
Sect. 2, the description of the immune system-cancer model obtained, In Sect. 3, some
important definitions and theorems to be used in the paper, fractional-order models and
stability analysis for model with Caputo derivative, In Sect. 4, existence-uniqueness of the
model expressed by considering in term of the Caputo fractional derivative will be examined.
In Sect. 5, simulation and interpretations about the new time-dependent ordinary differential
and the modified model which is expressed by considering in term of Caputo, CF derivatives,
and in Sect. 6, the final part will be given.

2 Description of the immune system-cancer model

In the first equation of Eq. (1), which gives the concentration of CD4+T lymphocytes,
the terms a0 and −c0H , symbolize birth and normal death rates, respectively. The term

b0DH
(

1 − H
f0

)
, the term λ42

I2
K2+I2

H
(

1 − H
f0

)
and the term λ412

I12
K12+I12

H
(

1 − H
f0

)
refer

to CD4+T lymphocyte proliferation under dendritic cell, IL-2 and IL-12 effect, respectively.
In the 2nd equation of Eq. (1) discussing CD8+T lymphocytes, the terms a1 and −c1C , stands

for birth and normal death rates, respectively . The term b1
I2

K2+I2
(M + D)C

(
1 − C

f1

)
indi-

cates the interaction of CD8+T cells and cancer cells, IL-2 and dendritic cells while the
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term λ812
I12

K12+I12
C

(
1 − C

f1

)
models the proliferation of CD8+T lymphocytes under IL-12

effect. In the 3rd equation of Eq. (1), the dynamics of tumor cells are discussed. The term

b2M
(

1 − M
f2

)
symbolizes the growth of tumor cells and the term −d2FMC symbolizes the

decrease in tumor cells under the anti-PD-L1 effect of CD8+T cells. In the fourth equation
of Eq. (1 ), the term −d3DC models the decrease in dendritic cells which is considered to
exist in dynamics when CD8+T lymphocytes become active. In the fifth equation of Eq. (1)
symbolizing the IL-2 cytokine dynamics, b4DH and −e4 I2C define IL-2 proliferation under
the effect of T (CD4+T and CD8+T) lymphocytes, dendritic cells and the term −c4 I2 defines
the normal death numbers. In the sixth equation of Eq. (1) symbolizing the dynamics of IL-12
cytokines, λDI12

D defines IL-12 proliferation under the effect of dendritic cells, and the term
−dI12 I12 defines the normal death numbers. The seventh equation of Eq. (1), the term −γ Z
model the amount of reduction of the anti-PD-L1 inhibitor, which is considered to exist in
dynamics, while defining the anti-PD-L1 dynamics.

3 Fractional-order cancer-immune model and stability analysis for model with
Caputo derivative

In this section, there are some important definitions which using this paper. When we rewrite
the new model in Eq. (1), we use Caputo and Caputo–Fabrizio fractional derivative.

Definition 1 [36] Let τ > 0, t > 0, and g is a function. The fractional-order integral is

I τ g (t) = 1

Γ (τ)

∫ t

0
(t − s)τ−1 g (s) ds

and the fractional-order derivative τ ∈ (m − 1,m) is

d

dt
g (t) = Im−τ Dmg (t) .

Definition 2 [36] The Caputo fractional derivative is given by

C
0 Dτ

t g (t) = 1

Γ (τ)

∫ t

0
(t − s)m−τ−1 f (m) (s) ds,

where τ ∈ (m − 1,m) , τ ∈ Z+, g is a time-dependent function.

Definition 3 [37] Let a < b, g ∈ H1 (a, b) where H1 is Sobolev space of order 1 in (a, b)
and τ ∈ [0, 1], the Caputo–Fabrizio derivative is given by

Dτ
t [g (t)] = M (τ )

1 − τ

t∫
a

g′ (s) exp

[
−τ

t − s

1 − τ

]
ds (2)

where M (τ ) is a normalization function and M (0) = M (1) = 1. If g /∈ H1 (a, b) , this
derivative can be written as follow:

Dτ
t [g (t)] = τM (τ )

1 − τ

t∫
a

(g (t) − g (s)) exp

[
−τ

t − s

1 − τ

]
ds. (3)

Theorem 1 [38] For Caputo fractional derivative system equilibrium points are found via
f (x) = 0. If the eigenvalues λ of the Jacobian matrix satisfy |arg(λ)| > απ

2 , the eigenvalues
are locally asymptotically stable.
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The new ordinary systems given in Eq. (1) is rewritten with Caputo fractional derivative
as follows:

C
0 Dτ

t (H) = a0 + b0DH

(
1 − H

f0

)
+ λ42

I2
K2 + I2

H

(
1 − H

f0

)

+λ412
I12

K12 + I12
H

(
1 − H

f0

)
− c0H,

C
0 Dτ

t (C) = a1 + b1
I2

K2 + I2
(M + D)C

(
1 − C

f1

)

+λ812
I12

K12 + I12
C

(
1 − C

f1

)
− c1C,

C
0 Dτ

t (M) = b2M

(
1 − M

f2

)
− d2FMC,

C
0 Dτ

t (D) = −d3DC,
C
0 Dτ

t (I2) = b4DH − e4 I2C − c4 I2,
C
0 Dτ

t (I12) = λDI12
D − dI12 I12,

C
0 Dτ

t (Z) = −γ Z (4)

and with Caputo–Fabrizio fractional derivative as follows:

CF
0 Dτ

t (H) = a0 + b0DH

(
1 − H

f0

)
+ λ42

I2
K2 + I2

H

(
1 − H

f0

)

+λ412
I12

K12 + I12
H

(
1 − H

f0

)
− c0H,

CF
0 Dτ

t (C) = a1 + b1
I2

K2 + I2
(M + D)C

(
1 − C

f1

)

+λ812
I12

K12 + I12
C

(
1 − C

f1

)
− c1C,

CF
0 Dτ

t (M) = b2M

(
1 − M

f2

)
− d2FMC,

CF
0 Dτ

t (D) = −d3DC,
CF
0 Dτ

t (I2) = b4DH − e4 I2C − c4 I2,
CF
0 Dτ

t (I12) = λDI12
D − dI12 I12,

CF
0 Dτ

t (Z) = −γ Z (5)

for the initial conditions H (0) = 0, C (0) = 0, M (0) = 1, D (0) = 10, I2 (0) = 0,
I12 = (0) = 0 and Z = (0) = 0.2 where τ ∈ [0, 1]. And H , C , M , D, I2, I12, Z represent
CD4+T (helper) cells, CD8+T (cytotoxic) cells, myeloid (cancer) cells, dendritic cells, IL-2,
IL-12 and anti-PD-L1, respectively.

We study the natural equilibrium points in system (4), as no treatment is considered. To
this aim, firstly we assume the system is time independent. Namely,

a0 + b0DH

(
1 − H

f0

)
+ λ42

I2
K2 + I2

H

(
1 − H

f0

)

+λ412
I12

K12 + I12
H

(
1 − H

f0

)
− c0H = 0,
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a1 + b1
I2

K2 + I2
(M + D)C

(
1 − C

f1

)

+λ812
I12

K12 + I12
C

(
1 − C

f1

)
− c1C = 0,

b2M

(
1 − M

f2

)
− d2FMC = 0,

−d3DC = 0,

b4DH − e4 I2C − c4 I2 = 0,

λDI12 D − dI12 I12 = 0,

−γ Z = 0.

If we solve the nonlinear system with model parameter, we obtain that

D = 0, I12 = 0, I2 = 0, Z = 0, H = a0

c0
,C = a1

c1
.

The tumor growth law to solve

M

[(
b2 − b2M

f2

)
− d2F0C

]
= 0

with when Z = 0, F0 = cpd−1
π

(
tan−1

(
(−1) kpd

) + π
2

) + 1.

Hence, obtained by

M = 0 and M = − f2 (a1d2F0 + a1 − a1b2)

a1b2
.

The dynamical system has two equilibrium points P1 = (H1,C1, M1, D1, I21, I121, Z1) and
P2 = (H2,C2, M2, D2, I22, I122, Z2) defined by

H1,2 = a0

c0
,C1,2 = a1

c1
, M1 = 0 and M2 = − f2 (a1d2F0 + a1 − a1b2)

a1b2
,

D1,2 = 0, I21,2 = 0, I121,2 = 0, Z1,2 = 0.

By computing the Jacobian matrix J (P) of the system (4), we obtain the eigenvalues of
J (P1)

λ
(1)
1 = −c0, λ

(1)
2 = −c1, λ

(1)
3 =

(
b2 − d2F0

a1

c1

)
,

λ
(1)
4 = −d3

a1

c1
, λ

(1)
5 = −e4

a1

c1
, λ

(1)
6 = −dI12 , λ

(1)
7 = −γ,

and J (P2)

λ
(2)
1 = −c0, λ

(2)
2 = −c1, λ

(2)
3 = −

(
b2 − d2F0

a1

c1

)
,

λ
(2)
4 = −d3

a1

c1
, λ

(2)
5 = −e4

a1

c1
, λ

(2)
6 = −dI12 , λ

(2)
7 = −γ.
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Using by parameters in Table 1, we say that the eigenvalues are negative except for λ
(1)
3 and

λ
(2)
3 because of that all parameters are positive. As can be seen from the equation of λ

(1)
3 and

λ
(2)
3 , the stability of the equilibrium points depends on the −c1b2 + d2F0a1. Namely, if

F0a1

c1
− b2

d2
> 0,

P1 is unstable and P2 is stable or

F0a1

c1
− b2

d2
< 0,

P1 is stable and P2 is unstable. To talk biologically, if birth and death rate of CD8+T cells
under the effect of anti-PD-L1, F0a1

c1
is greater than the ratio between tumor growth and tumor

killing b2
d2

the immune system can effectively fight tumor cells and kill them. Although both
equilibrium points are characterized by CD4+T and CD8+T cells, there is a big difference
between tumor density. The first point is unstable with no tumor, but the other is in the stable

with tumor because of
∣∣∣arg(λ

(2)
3 )

∣∣∣ > απ
2 .

4 The existence and uniqueness of the system with Caputo derivative

Let system Eq. (4) with the initial conditions H (0) � 0, C (0) � 0, M (0) � 0 , D (0) � 0,
I2 (0) � 0, I12 (0) � 0, Z (0) � 0 where 0 < τ ≤ 1 and all parameters are positive. System
(4) can be written as follows:

Dτ X (t) = A1X (t) + H A2X (t) + CA3X (t) + I2
K2 + I2

A4X (t) + I2
K2 + I2

A5X (t)

+H2A6X (t) + I2
K2 + I2

H A7X (t) + I12

K12 + I12
H A8X (t) + I2

K2 + I2
CA9

×X (t)
I12

K12 + I12
CA10X (t) + I2

K2 + I2
MCA11X (t) + I2

K2 + I2
DCA11X (t)

+MA12X (t) + FMA13X (t) + φ (6)

where t ∈ [0, τ ] and

x(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H(t)
C(t)
M(t)
D(t)
I2(t)
I12(t)
Z(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, x(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H(0)

C(0)

M(0)

D(0)

I2(0)

I12(0)

Z(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 0 0 0 0 0 0
0 a1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and for i is row, j is column for
i, j ∈ {1, 2, 3, ...7} and ami j ,m ∈ {1, 2, 3, ..., 13} is the element of Am matrix, respectively.

a1
11 = −c0, a1

22 = −c1, a1
33 = b2, a1

55 = −c4, a1
66 = −dI12 , a1

77 = −γ , a2
14 = b0, a2

45 = b4,
a3

44 = −d3,
a3

55 = −e4, a4
11 = λ42, a5

11 = λ412, a5
22 = λ812, a6

14 = −b0 , a7
11 = − λ42

f0
, a8

11 = − λ412
f1

,

a9
13 = b1,
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a9
14 = b1, a10

16 = − λ812
f1

, a11
22 = − b1

f1
, a12

13 = − b2
f2

, a13
12 = −d2 and the remaining element of

Am matrix are 0.
We give some definitions about this topic which are given in [39–41].

Definition 4 Let C∗ [0, τ ] be the class of continuous column vector X(t) whose components
H(t), C(t), M(t), I2(t), I12(t) , Z(t) and the class of continuous functions on the interval
[0, τ ]. The norm of X ∈ C∗ [0, τ ] is shown by a

‖X‖ = sup
t

∣∣∣Xe−Nt H(t)
∣∣∣ + sup

t

∣∣∣Xe−NtC(t)
∣∣∣ + sup

t

∣∣∣Xe−Nt M(t)
∣∣∣ + sup

t

∣∣∣Xe−Nt D(t)
∣∣∣

+sup
t

∣∣∣Xe−Nt I2(t)
∣∣∣ + sup

t

∣∣∣Xe−Nt I12(t)
∣∣∣ + sup

t

∣∣∣Xe−Nt Z(t)
∣∣∣

when t > μ ≥ 0, we write C∗
μ [0, τ ] and C∗ [0, τ ] .

Definition 5 X ∈ C∗ [0, τ ] is a solution of the initial value problem in Eq. (6) if

– (t, X (t)) ∈ B, tε [0, τ ] where B = [0, τ ] × L , L = {(
H,C, M, D, I2, I12, Z

) ∈ R7+ :
|H | ≤ h, |C | ≤ c, |M | ≤ m, |I2| ≤ i2, |I12| ≤ i12, |Z | ≤ z} ; h, c,m, i2, i12, z are pos-
itive constants.

– X(t) satisfy in Eq. (6).

Theorem 2 The initial value problem Eq. (6) has a unique solution X ∈ C∗ [0, τ ] .

Proof We can write by using properties of fractional calculus and Eq. (6)

I 1−τ d

dt
X (t) = A1X (t) + H A2X (t) + CA3X (t) + I2

K2 + I2
A4X (t) + I2

K2 + I2
A5X (t)

+H2A6X (t) + I2
K2 + I2

H A7X (t) + I12

K12 + I12
H A8X (t) + I2

K2 + I2
CA9X (t)

+ I12

K12 + I12
CA10X (t) + I2

K2 + I2
MCA11X (t) + I2

K2 + I2
DCA11X (t)

+MA12X (t) + FMA13X (t) + φ.

We obtain with I τ

X (t) = X (0) + I τ

[
A1X (t) + H A2X (t) + CA3X (t) + I2

K2 + I2
A4X (t)

+ I2
K2 + I2

A5X (t)

+H2A6X (t) + I2
K2 + I2

H A7X (t) + I12

K12 + I12
H A8X (t) + I2

K2 + I2
CA9X (t)

+ I12

K12 + I12
CA10X (t) + I2

K2 + I2
MCA11X (t) + I2

K2 + I2
DCA11X (t)

+MA12X (t) + FMA13X (t) +φ] . (7)

Let F : C∗ [0, τ ] → C∗ [0, τ ]. Hence by using F we obtain

FX (t) = X (0) + I τ

[
A1X (t) + H A2X (t) + CA3X (t) + I2

K2 + I2
A4X (t)

+ I2
K2 + I2

A5X (t)

+H2A6X (t) + I2
K2 + I2

H A7X (t) + I12

K12 + I12
H A8X (t) + I2

K2 + I2
CA9X (t)
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+ I12

K12 + I12
CA10X (t) + I2

K2 + I2
MCA11X (t) + I2

K2 + I2
DCA11X (t)

+ MA12X (t) + FMA13X (t) + φ] . (8)

Then

e−NT (FX − FY ) = e−Nt I τ [A1X (t) + H A2 (X − Y ) + CA3 (X − Y )

+ I2
K2 + I2

A4 (X − Y )

+ I2
K2 + I2

A5 (X − Y ) + H2A6 (X − Y ) + I2
K2 + I2

H A7 (X − Y )

+ I12

K12 + I12
H A8 (X − Y ) + I2

K2 + I2
CA9 (X − Y ) + I12

K12 + I12
CA10

× (X − Y ) + I2
K2 + I2

MCA11 (X − Y ) + I2
K2 + I2

DCA11 (X − Y )

+ MA12 (X − Y ) + FMA13 (X − Y ) + φ]

≤ 1

Γ (τ)

∫ t

0
(t − s)τ−1 e−N (t−s) (X (s) − Y (s)) × e−Ns (A1 + hA2 + cA3

+ i2
K2 + i2

A4 + i2
K2 + i2

A5 + h2A6 + i2
K2 + i2

hA7 + i12

K12 + i12
hA8

+ i2
K2 + i2

cA9 + i12

K12 + i12
cA10

i2
K2 + i2

mcA11 + i2
K2 + i2

dcA11 + mA12

+ f mA13) ds

≤
(
A1 + hA2 + cA3 + i2

K2 + i2
A4 + i2

K2 + i2
A5 + h2A6 + i2

K2 + i2
hA7

+ i12

K12 + i12
hA8 + i2

K2 + i2
cA9 + i12

K12 + i12
cA10 + i2

K2 + i2
mcA11

+ i2
K2 + i2

dcA11 + mA12 + f mA13

)
× 1

N τ
‖X − Y‖ 1

Γ (τ)

∫ t

0
sτ−1ds.

We see that

‖FX − FY‖ ≤
(
A1 + hA2 + cA3 + i2

K2 + i2
A4 + i2

K2 + i2
A5 + h2A6 + i2

K2 + i2
hA7

+ i12

K12i12
hA8

i2
K2 + i2

cA9 + i12

K12 + i12
cA10 + i2

K2 + i2
mcA11 + i2

K2 + i2

× dcA11 + mA12 + f mA13) × 1

N τ
‖X − Y‖ .

If choose N following

N τ ≥
(
A1 + hA2 + cA3 + i2

K2 + i2
A4 + i2

K2 + i2
A5 + h2A6

+ i2
K2 + i2

hA7 + i12

K12 + i12
hA8

+ i2
K2 + i2

cA9 + i12

K12 + i12
cA10 + i2

K2 + i2
mcA11 + i2

K2 + i2
dcA11 + mA12 + f mA13

)
,

then

‖FX − FY‖ < ‖X − Y‖ .
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This is shown the operator F given by Eq. (8) has a fixed point. Therefore, (7) has a unique
solution X ∈ C∗ [0, τ ] . We write from Eq. (7) and using d

dt X (t)

e−Nt X
′
(t) = e−Nt

[
tτ−1

Γ (τ)

(
A1X (0) + H (0) A2X (0) + C (0) A3X (0) + I2 (0)

K2 + I2 (0)
A4X (0)

+ I2 (0)

K2 + I2 (0)
A5X (0) + H2 (0) A6X (0) + I2 (0)

K2 + I2 (0)
H (0) A7X (0) + I12 (0)

K12 + I12 (0)

×H (0) A8X (t) + I2 (0)

K2 + I2 (0)
C (0) A9X (0) + I12 (0)

K12 + I12 (0)
C (0) A10X (0)

+ I2 (0)

K2 + I2 (0)
M (0)C (0) A11X (0) + I2 (0)

K2 + I2 (0)
D (0)C (0) A11X (0) + M (0) A12

× X (0) + F (0) M (0) A13X (0) + φ) + I τ
(
A1X

′
(t) + H

′
(t) A2X (t) + H (t) A2X

′
(t)

+C
′
(t) A3X (t) + C (t) A3X

′
(t) + K2

(K2 + I2 (t))2 A4X (t) + I2 (t)

K2 + I2 (t)
A4X

′
(t)

+ K2

(K2 + I2 (t))2 A5X (t) + I2 (t)

K2 + I2 (t)
A5X

′
(t) + 2H (t) H2 (t) A6X (t) + H2A6X

′
(t)

+ K2

(K2 + I2 (t))2 H A7X (t) + I2 (t)

K2 + I2 (t)
H

′
(t) A7X (t) + I2 (t)

K2 + I2 (t)
H (t) A7X

′
(t)

+ K2

(K12 + I12 (t))2 H (t) A8X (t) + I12 (t)

K12 + I12 (t)
H

′
(t) A8X (t) + I12 (t)

K12 + I12 (t)
H (t)

×A8X
′
(t) + K2

(K2 + I2 (t))2 C (t) A9X (t) + I2 (t)

K2 + I2 (t)
C

′
(t) A9X (t) + I2 (t)

K2 + I2 (t)

×C (t) A9X
′
(t) + K12

(K12 + I12 (t))2 C (t) A10X (t) + I12 (t)

K12 + I12 (t)
C

′
(t) A10X (t)

+ I12 (t)

K12 + I12 (t)
C (t) A10X

′
(t) + K2

(K2 + I2 (t))2 M (t)C (t) A11X (t) + I2 (t)

K2 + I2 (t)

×M
′
(t)C (t) A11X (t) + I2 (t)

K2 + I2 (t)
M (t)C

′
(t) A11X (t) + I2 (t)

K2 + I2 (t)
M (t)C (t)

×A11X
′
(t) + K2

(K2 + I2 (t))2 D (t)C (t) A11X (t) + I2 (t)

K2 + I2 (t)
D

′
(t)C (t) A11X (t)

+ I2 (t)

K2 + I2 (t)
D (t)C

′
(t) A11X (t) + I2 (t)

K2 + I2 (t)
D (t)C (t) A11X

′
(t) + M

′
(t) A12X (t)

+ M (t) A12X
′
(t) + F

′
(t) M (t) A13X (t) + F (t) M

′
(t) A13X (t) + F (t) M (t) A13X

′
(t)

)]
.

From Eq. (7), we can say that X ′ ∈ C∗
μ [0, τ ] . Now from Eq. (7), written

dX (t)

dt
= d

dt
I τ

[
A1X (t) + H A2X (t) + CA3X (t) + I2

K2 + I2
A4X (t) + I2

K2 + I2
A5X (t)

+H2A6X (t) + I2
K2 + I2

H A7X (t) + I12

K12 + I12
H A8X (t) + I2

K2 + I2
CA9X (t)

+ I12

K12 + I12
CA10X (t) + I2

K2 + I2
MCA11X (t) + I2

K2 + I2
DCA11X (t)

+ MA12X (t) + FMA13X (t) + φ] ,

hence,

I 1−τ dX (t)

dt
= I 1−τ d

dt
I τ [A1X (t) + H A2X (t) + CA3X (t)

+ I2
K2 + I2

A4X (t) + I2
K2 + I2

A5X (t)
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Fig. 2 Figures about ordinary differential system (1) for H , C , M , D, I2, I12, Z , respectively

+H2A6X (t) + I2
K2 + I2

H A7X (t) + I12

K12 + I12
H A8X (t) + I2

K2 + I2
CA9X (t)

+ I12

K12 + I12
CA10X (t) + I2

K2 + I2
MCA11X (t) + I2

K2 + I2
DCA11X (t)

+ MA12X (t) + FMA13X (t) + φ] .
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Table 1 Parameter values for c = cells, h = hour

Parameter Value (Unit) References Parameter Value (Unit) References

a0 0.0001 (ch−1mm−3) [14] b0 0.1(c−1h−1mm3) [14]

λ42 0.01 (h−1) Estimated K2 0.0237 (pg/mm3) Estimated

λ412 0.39 (h−1) Estimated K12 0.8 (pg/mm3) Estimated

f0 1 (cm−3) [14] c0 0.005 (h−1) Estimated

a1 0.0001 (ch−1mm−3) [14] b1 0.01 (c−1h−1mm−3) [14]

f1 1 (cm−3) [14] λ812 0.346 (h−1) Estimated

c1 0.005 (h−1) Estimated b2 0.02 (h−1) [14]

f2 1 (cm−3) Estimated d2 0.1 (c−1h−1mm3) [14]

cpd 50 [18] kpd 97 [18]

d3 0.1 (c−1h−1mm3) [14] b4 0.01 (c−1h−1mm3) [14]

e4 10−7 (c−1h−1mm3) [14] c4 0.01 (h−1) [14]

λDI12
0.00046 (h−1) Estimated dI12 0.0575 (h−1) Estimated

γ 0.001925 (h−1) Estimated

So, we get

Dτ X (t) = A1X (t) + H A2X (t) + CA3X (t) + I2
K2 + I2

A4X (t) + I2
K2 + I2

A5X (t)

+H2A6X (t) + I2
K2 + I2

H A7X (t) + I12

K12 + I12
H A8X (t) + I2

K2 + I2
CA9X (t)

+ I12

K12 + I12
CA10X (t) + I2

K2 + I2
MCA11X (t) + I2

K2 + I2
DCA11X (t)

+MA12X (t) + FMA13X (t) + φ

and

X (0) = X0 + I τ

[
A1X (0) + H A2X (0) + CA3X (0) + I2

K2 + I2
A4X (0) + I2

K2 + I2
A5X (0)

+H2A6X (0) + I2
K2 + I2

H A7X (0) + I12

K12 + I12
H A8X (0) + I2

K2 + I2
CA9X (0)

+ I12

K12 + I12
CA10X (0) + I2

K2 + I2
MCA11X (0) + I2

K2 + I2
DCA11X (0)

+ MA12X (0) + FMA13X (0) + φ] = X0.

So Eq. (7) is equivalent to the initial value problem Eq. (6). 	


5 Numerical simulations

5.1 Numerical scheme for ordinary differential immune system-cancer model

Figure 2 is obtained with the Euler method, which is also called the tangent line method
for ordinary differential cancer-immune system in Eq. (1) by using parameter of in Table 1.
Figure 2c is examined, cancer cells are almost 0 in 5 days and after the 60th day, and cancer
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Fig. 3 Figures about fractional-order systems (4) for τ = 0.99

cells have grown almost back to the starting point. Conversely, immune system components
shown in Fig. 2a, b, e act in the opposite direction with cancer cells in the same time periods.
Time-dependent change of dendritic cells and anti-PD-L1, which are presented to the system
with D(0) = 1, Z(0) = 0.2 starting point are observed in Fig. 2d, f, respectively .
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Fig. 4 Figures about fractional-order systems (4) for τ = 0.97

5.2 Numerical scheme for Caputo and CF fractional immune system-cancer model

Figures 3, 4, and 5 are obtained with Adams–Bashforth–Moulton predictor–corrector method
which is given in [42] for Caputo system in (4) and the scheme given in [43] for the Caputo–
Fabrizio system in (5) while for varying τ values with the initial values and parameters in
Table 1.
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Fig. 5 Figures about fractional-order systems (4) for τ = 0.95

In Figs. 3c, 4c, and 5c, it is observed that cancer cells are eliminated in 5 days at first,
but they start growing again after about 25 days for Caputo system. Simultaneously, immune
system components are almost the peak point in 5 days and are the 25th day bottom point
for the order τ examined. It is clearly seen that, the order τ shrinks, the immune system
components are much stronger via IL-12 and anti-PD-L1, whereas cancer cells grow much
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Table 2 The value of cancer
cells at t = 1000 hours for
different order both CF and
Caputo fractional derivative

τ CF Caputo

0.99 0.000014402 0,565837558

0.97 0.000014487 0,385022267

0.95 0.000014547 0,222222229

less at Figs. 3c, 4c, and 5c. It is appeared that brings under control cancer cells much easier
and these grow much less under the influence of a stronger immune system components. The
other words, cancer cells grow 45% less in order τ = 0.99 at Fig. 3c, 60% less in τ = 0.97
at Fig. 4c and 80% less in τ = 0.95 at Fig. 5c for Caputo system.

For CF system, in Figs. 3, 4, and 5, one can see that cancer cells become almost 0 in
10 days while immune system cells become the strongest by way of IL-12 and anti-PD-L1.
Also, it is seen that cancer cells do not grow again after being zero in Figs. 3c, 4c, and 5c. In
other words, there are 100% reduction in cancer cells in considered order τ .

The main factor in cancer cells being almost zero is that the immune system cells are
stronger for CF system. In particular, if the graphs given for the dendritic cell in Figs. 3d,
4d, and 5d are examined the facility the elimination of cancer cells by stimulating the helper
cells more, since these type of cells exist longer in CF derivative. If Figs. 2 and 3, 4, and 5
are considered together, it is observed that the equation expressed by fractional derivatives
have managed to control cancer cells more in less time because of its memory and hereditary
effect.

6 Concluding remarks and future works

In this paper, after briefly giving information about cancer and the immune system, cancer-
immune system mathematical model given in [14] is modified by adding IL-12 and anti-PD-
L1 variables because they change the number and effectiveness of T lymphocytes. In this way,
the immune system’s fight against cancer will be more effective. The ordinary differential
new model is considered for the first time by using Caputo and CF fractional derivative. More-
over, after examining the equilibrium points and stability of the fractional-order model with
singular kernel, researches on the existence-uniqueness of the model’s numerical solution is
included. The model with Caputo derivative is solved Adams–Bashforth–Moulton predictor–
corrector method for fractional order, the model with CF derivative is solved numerical solu-
tion given in [43] with the help of MATLAB. The immune system plays a major role in the
development, growth or destruction of cancer cells. We have added to Eq. (1) the variable
anti-PD-L1 inhibitor to catch cells escaping from the immune system and destroy these cells,
and the variable IL-12 cytokine to increase the number of CD4+T and CD8+T lymphocytes
production. Through Figs. 2, 3, 4 and 5, it is clearly seen that the reason why cancer cells
decrease more, is the strengthening of the immune system through newly added variables,
as expected. Indeed, the graphs of the model deals with fractional derivative shows that the
immune system become stronger as the degree decreases as the application of fractional
derivative to natural events is a more accurate approach. And the Table 2, summarizes that
using CF derivative for this model yields more effective results due to having a non-singular
kernel.

In the future, the mathematical model can be updated by considering other cytokines, and
the new model obtained can be examined with different types of derivatives.
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