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APPROXIMATION BY RATIONAL FUNCTIONS ON DOUBLY CONNECTED DOMAINS
IN WEIGHTED GENERALIZED GRAND SMIRNOV CLASSES

A. Testici UDC 517.5

Let G ⇢ C be a doubly connected domain bounded by two rectifiable Carleson curves. We use the
higher modulus of smoothness in order to investigate the approximation properties of (p − ")-Faber–
Laurent rational functions in the subclass of weighted generalized grand Smirnov classes Ep),✓(G,!)

of analytic functions.

1. Introduction

Assume that B is a simply connected domain bounded by a rectifiable Jordan curve Γ. By L

p
(Γ) and E

p
(B),

1  p < 1, we denote the set of all measurable complex-valued functions such that |f |p is Lebesgue integrable
with respect to arclength on Γ and the Smirnov class of analytic functions in B, respectively. Recall that if there
exists a sequence (γn), n = 1, 2, . . . , of rectifiable Jordan curves in B that converges to Γ as n ! 1 such that

sup

n

8

<

:

Z

γn

�

�

f(z)

�

�

p|dz|

9

=

;

< 1,

then we say that f belongs to the Smirnov class Ep
(B) [24, p. 168]. Each function f 2 E

p
(B) has a nontangential

limit almost everywhere (a.e.) on Γ and if we use the same notation for the limit function of f, then f 2 L

p
(Γ).

Note that Lp
(Γ) and E

p
(B) are Banach spaces with respect to the norm

kfkEp(B) := kfkLp(Γ) :=

0

@

Z

Γ

�

�

f(z)

�

�

p|dz|

1

A

1/p

, 1  p < 1.

Let G ⇢ C be a doubly connected domain in the complex plane C bounded by rectifiable Jordan curves Γ1

and Γ2 such that Γ2 is in Γ1.

Let G−
1 := ExtΓ1, G1 := IntΓ1, and G

−
2 := ExtΓ2, G2 := IntΓ2. Without loss of generality we can

assume that 0 2 G2.

Also let T :=

�

w 2 C : |w| = 1

 

, U := IntT, and U−
:= ExtT. We denote by ' and '1 the conformal

mappings of G−
1 and G2 onto U−

, respectively, normalized by

'(1) = 1, lim

z!1

'(z)

z

> 0, and '1(0) = 1, lim

z!0
z'1(z) > 0.

Let  and  1 be the inverse mappings for ' and '1, respectively. The functions ' and  have continuous
extensions to Γ1 and T, their derivatives '

0 and  

0 have definite nontangential limit values a.e. on Γ1 and T.
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They are integrable with respect to the Lebesgue measure on Γ1 and T, respectively. Similarly, the functions '1

and  1 have continuous extensions to Γ2 and T, their derivatives '

0
1 and  

0
1 have definite nontangential limit

values a.e. on Γ2 and T that are integrable with respect to the Lebesgue measure on Γ2 and T [16, p. 19–438].
We set

Lr :=
�

z 2 G

−
1 : |'(z)| = r > 1

 

and LR :=

�

z 2 G2 : |'(z)| = R > 1

 

.

Let G−
r := ExtLr, Gr := IntLr and G

−
R := ExtLR, GR := IntLR.

Note that ' is an analytic function in G

−
r and

⇥

'(z)

⇤k ⇥
'

0
(z)

⇤1/(p−")

has a pole of k th degree at 1, where 0 < " < p− 1. In addition, '1 is analytic function in GR and

⇥

'1(z)
⇤k− 2

p−"
⇥

'

0
1(z)

⇤1/(p−")

has a pole of k th degree at 0, where 0 < " < p − 1. For the construction of polynomials of the approximation
process, we need some expansions. For this purpose, by applying the same technique as in [5], for 1 < p < 1
and 0 < " < p− 1, we obtain

⇥

 

0
(w)

⇤1− 1
p−"

 (w)− z

=

1
X

k=0

Fk,p,"(z)

w

k+1
, z 2 Gr, w 2 U−

,

w

−2
p−"
⇥

 

0
1(w)

⇤1− 1
p−"

 1(w)− z

=

1
X

k=0

−
e

Fk,p,"(1/z)

w

k+1
, z 2 G

−
R, w 2 U−

,

where Fk,p,"(z) and eFk,p,"(1/z) are polynomials with respect to z and 1/z, respectively. Note that, for the first
time, Fk,p,"(z) and eFk,p,"(1/z) were considered in [14]. As in the classical case, Fk,p,"(z) and eFk,p,"(1/z) have
the following integral representations for every k = 0, 1, 2, . . . :

Fk,p,"(z) =
1

2⇡i

Z

Lr

⇥

'(⇣)

⇤k�
'

0
(⇣)

�

1
p−"

⇣ − z

d⇣, z 2 Gr, r > 1, (1)

e

Fk,p,"(1/z) = − 1

2⇡i

Z

LR

⇥

'1(⇠)
⇤k−2/p−"

('

0
1(⇠))

1
p−"

⇠ − z

d⇠, z 2 G

−
R, R > 1. (2)

The polynomials Fk,p,"(z) and eFk,p,"(1/z) are called the (p−")-Faber polynomials for Gr and G

−
R, respectively.

If f is an analytic function in doubly connected domain bounded by curves Lr and LR, then, for k =

0, 1, 2, . . . , by using the Cauchy integral formula and the expansions given for Fk,p," and e

Fk,p,", we get the
following (p− ")-Faber–Laurent series expansion:

f(z) =

1
X

k=0

ak (f)Fk,p,"(z) +

1
X

k=1

eak (f)
e

Fk,p,"(1/z),



1124 A. TESTICI

where

ak(f) :=
1

2⇡i

Z

|w|=r1

f

⇥

 (w)

⇤�

 

0
(w)

�1/(p−")

w

k+1
dw, 1 < r1 < r,

and

eak(f) :=
1

2⇡i

Z

|w|=R1

f

⇥

 1(w)
⇤�

 

0
1(w)

�1/(p−")
w

2/(p−")

w

k+1
dw, 1 < R1 < R.

The rational function

Rn(f)(z) :=

n
X

k=0

ak(f)Fk,p,"(z) +

n
X

k=1

eak(f)
e

Fk,p,"(1/z)

is called the (p− ")-Faber–Laurent rational function of f of degree n.

Definition 1. A rectifiable Jordan curve Γ is called a Carleson curve if the condition

sup

z2Γ
sup

r>0

�

�

Γ(z, r)

�

�

r

< 1

is satisfied, where Γ(z, r) is a portion of Γ in the open disk of radius r centered at z and
�

�

Γ(z, r)

�

� is its length.
We denote the set of all Carleson curves by S .

The direct and converse theorems of the approximation theory in weighted and nonweighted Smirnov classes
have been extensively investigated under various conditions imposed on the boundaries of simply connected do-
mains. In the case where Γ is an analytic curve, some results were obtained by Walsh and Russel [19]. In the
case where Γ is a Dini-smooth curve, the direct and inverse theorems were proved by Alper [27]. For the Smirnov
classes in which Γ is a Carleson curve, these results were generalized in [18]. In weighted Smirnov classes, some
similar results for Carleson curves were obtained in [5–9, 17]. Similar theorems of the approximation theory in
Smirnov–Orlicz classes were studied in [26, 30, 31, 34].

For a Dini-smooth curve Γ , the direct and inverse theorems of approximation theory in the Smirnov classes
with variable exponent were proved in [10, 12]. Earlier similar results were stated without proofs in [15, 25].
The approximation properties of the Faber–Laurent series in Lebesgue spaces with variable exponent were inves-
tigated in [11].

On a doubly connected domain bounded by two Carleson curves, the rate of approximation by the p-Faber–
Laurent rational functions in Smirnov classes was studied in [29]. On doubly connected domain bounded by Dini-
smooth curves, the rate of approximation by the Faber rational functions in Smirnov–Orlicz classes and Smirnov
classes with variable exponent were investigated in [28] and [3], respectively.

The direct and inverse theorems of approximation theory in weighted generalized grand Lebesgue spaces
were proved in [13]. After this, in weighted generalized grand Smirnov classes defined on a simply connected
domain bounded by a Carleson curve, some approximation theorems were proved in [14]. In the present work,
we investigate the approximation property of so-called (p − ")-Faber–Laurent rational functions in the weighted
generalized grand Smirnov classes defined on doubly connected domains.

The set of all measurable functions f such that

sup

0<"<p−1

8

<

:

"

✓ 1

|Γ|

Z

Γ

|f(x)|p−"
!(x)dx

9

=

;

1/(p−")

< 1
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forms a weighted generalized grand Lebesgue space L

p),✓
(Γ,!). It becomes a Banach space equipped with

the norm

kfkLp),✓(Γ,!) := sup

0<"<p−1

8

<

:

"

✓ 1

|Γ|

Z

Γ

�

�

f(x)

�

�

p−"
!(x)dx

9

=

;

1/(p−")

.

If ✓ = 0, then L

p),✓
(Γ) turns into a classical Lebesgue space L

p
(Γ). In the nonweighted case where ✓ = 1,

L

p),✓
(Γ) is called a grand Lebesgue space and denoted by L

p)
(Γ). The spaces Lp),✓

(Γ) were introduced for ✓ = 1

in [32] and for ✓ > 1 in [21]. The dual spaces of Lp)
(Γ) were characterized in [1]. In the same work, it was shown

that Lp)
(Γ) is a rearrangement invariant and Banach function space but it is not reflexive. We can show that

L

p
(Γ) ⇢ L

p)
(Γ) ⇢ L

p−"
(Γ).

It is possible to say that similar embedding relations hold in case of weighted generalized grand Lebesgue
spaces: If ✓1 < ✓2 and 1 < p < 1, then the embeddings

L

p
(Γ,!) ⇢ L

p),✓1
(Γ,!) ⇢ L

p),✓2
(Γ,!) ⇢ L

p−"
(Γ,!)

are valid.
L

p
(Γ,!) is not dense in L

p),✓
(Γ,!). We denote by Lp),✓

(Γ,!) the closure of Lp
(Γ,!) with respect to the

norm of Lp),✓
(Γ,!). We state that (see [20, 22]) Lp)

(Γ) is the set of functions satisfying the condition

lim

"!0

0

@

"

✓ 1

|Γ|

Z

Γ

�

�

f(x)

�

�

p−"
!(x)dx

1

A

= 0.

We now construct the Smirnov class defined on doubly connected domains. Let G⇤ be a doubly connected
domain in C and let f be an analytic function in G

⇤
. If there exists a sequence (∆⌫)

1
⌫=1 of domains whose

boundaries (Γ⌫)
1
⌫=1 consist of two rectifiable Jordan curves, the lengths of (Γ⌫)

1
⌫=1 are bounded and such that the

domain ∆n contains each compact subset of G⇤ for every n ≥ N for some n 2 N, and

lim sup

⌫!1

8

<

:

Z

Γ⌫

|f(z)|p|dz|

9

=

;

< 1,

then it is said that f belongs to the Smirnov classes Ep
(G

⇤
), p ≥ 1 [24, p. 182].

Definition 2. Let Γ := Γ1[Γ

−
2 and let G be a doubly connected domain bounded by Γ1 and Γ2 2 S, where

Γ2 is in Γ1. Also let ! be a weight function on Γ. The set

E

p),✓
(G,!) :=

n

f 2 E

1
(G) : f 2 L

p),✓
(Γ,!)

o

is called a weighted generalized grand Smirnov class of analytic functions in G.

For f 2 E

p),✓
(G,!), the norm is defined by

kfkEp),✓(G,!) := kfkLp),✓(Γ,!).
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We denote by Ep),✓
(G,!) the closure of the Smirnov class Ep

(G,!) of analytic function with respect to the
norm E

p),✓
(G,!).

For almost all z02Γ, the Cauchy singular integral SΓ(f) and the Hardy–Littlewood maximal function MΓ(f)

with f 2 L

1
(Γ), are defined as follows:

SΓ(f)(z0) := lim

r!0

Z

Γ\Γ(z0,r)

f(z)

z − z0
dz and MΓ(f)(z0) := sup

r>0

1

r

Z

Γ(z0,r)

|f(z)| |dz|.

Definition 3. Let ! be weight function on Γ such that Γ 2 S. Let 1 < p < 1 and 1/p+ 1/q = 1. We say
that ! satisfies Muckenhoupt’s Ap condition on Γ if

sup

z02Γ
sup

r>0

0

B

@

1

r

Z

Γ(z0,r)

!(z)|dz|

1

C

A

0

B

@

1

r

Z

Γ(z0,r)

⇥

!(z)

⇤−1/(p−1)|dz|

1

C

A

p−1

< 1.

Theorem A [33]. Let Γ 2 S, 1<p<1 and ✓>0. The operators SΓ : f ! SΓ(f) and MΓ : f ! MΓ(f)

are bounded in L

p),✓
(Γ,!) if and only if ! 2 Ap(Γ).

The norm in the space L

p),✓
(T,!) of 2⇡-periodic functions f is defined as

kfkLp),✓(T,!) := sup

0<"<p−1

8

<

:

"

✓

2⇡

2⇡
Z

0

�

�

f

�

e

it
�

�

�

p−"
!

�

e

it
�

dt

9

=

;

1/(p−")

.

Let f 2 L

p),✓
(T,!), 1 < p < 1, ✓ > 0, and, for r = 1, 2, 3, . . . ,

∆

r
tf(w) =

r
X

s=0

(−1)

r+s+1

✓

r

s

◆

f

�

we

ist
�

, t > 0.

We define an operator

σ

r
hf(w) :=

1

h

h
Z

0

�

�

∆

r
tf(w)

�

�

dt.

Now let 0 < h < 1. For given ! 2 Ap(T), 1 < p < 1, ✓ > 0, by using Theorem A, we conclude that

sup

|h|δ

�

�

σ

r
hf(w)

�

�

Lp),✓(T,!)  ckfkLp),✓(T,!) < 1,

which implies the correctness of the following definition:

Definition 4. Let 1 < p < 1, ✓ > 0, and let f 2 L

p),✓
(T,!), ! 2 Ap(T), δ > 0. A function

⌦r(f, .)p),✓,! : [0,1) ! [0,1) defined by

⌦r(f, δ)p),✓,! := sup

|h|δ

�

�

σ

r
hf(w)

�

�

Lp),✓(T,!)

is called the rth mean modulus of f.
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Let Γ1,Γ2 2 S and let ! be a weight function on Γ1 [ Γ

−
2 . We can consider ! as a weight on Γ1 and Γ2

separately.
For any f 2 L

p),✓
�

Γ1,!
�

and ! 2 Ap(Γ1), we set

f0(w) := f

⇥

 (w)

⇤�

 

0
(w)

�1/(p−")
, !0(w) := !

⇥

 (w)

⇤

, (3)

and, for any f 2 L

p),✓
(Γ2,!) and ! 2 Ap(Γ2), we set

f1(w) := f

⇥

 1(w)
⇤�

 

0
1(w)

�

1
p−"

w

2
p−"

, !1(w) := !

⇥

 1(w)
⇤

w

−2
. (4)

In this case, we obviously have f0 2 L

p),✓
(T,!0) and f1 2 L

p),✓
(T,!1) .

Let f 2 E

1
(B), where B is a simply connected domain bounded with a rectifiable Jordan curve Γ

⇤
. Then

f has a nontangential limit a.e. on Γ

⇤ and the boundary function belongs to L

1
(Γ

⇤
). For given f 2 L

p),✓
(Γ

⇤
,!)

the functions f+ and f

− defined by

f

+
(z) :=

1

2⇡i

Z

Γ⇤

f(⇣)

⇣ − z

d⇣ =

1

2⇡i

Z

T

⇥

 

0
(w)

⇤1− 1
p−"

 (w)− z

f0(w)dw, z 2 B,

f

−
(z) :=

1

2⇡i

Z

Γ⇤

f(⇣)

⇣ − z

d⇣ =

1

2⇡i

Z

T

w

−2
p−"
⇥

 

0
1(w)

⇤1− 1
p−"

 1(w)− z

f1(w)dw, z 2 B

−
,

are analytic in B and B

−
, respectively, and f

−
(1) = 0. The functions f

+ and f

− have nontangential limits
a.e. on Γ and the formulas

f

+
(z) = SΓ(f)(z) +

1

2

f(z) and f

−
(z) = SΓ(f)(z)−

1

2

f(z) (5)

hold. Hence,

f(z) = f

+
(z)− f

−
(z) (6)

holds a.e. on Γ [16].
The main result of the present paper is the following theorem:

Theorem 1. Let Γ1,Γ2 2 S and let G be a finite doubly connected domain bounded by Γ1 and Γ2 and
such that the curve Γ2 lies inside Γ1. Also let Γ := Γ1 [ Γ

−
2 and let ! 2 Ap(Γ), !0 2 Ap(T), !1 2 Ap(T),

1 < p < 1, ✓ > 0. If f 2 Ep),✓
(G,!), then there is a positive constant c independent of n such that

�

�

f −Rn(f)
�

�

Lp),✓(Γ,!)
 c

"

⌦r

✓

f0,
1

n

◆

p),✓,!0

+ ⌦r

✓

f1,
1

n

◆

p),✓,!1

#

for r = 1, 2, 3, . . . , where Rn(f) is the n th partial sum of the (p− ")-Faber–Laurent series of f.

2. Auxiliary Results

We denote by c, c1, . . . , various constants (in general, different in different relations) that depend only on the
numbers that are of no interest for our presentation.
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Some properties of Faber polynomials were investigated in [2, 4, 23]. By analogy with p-Faber polynomials
(see [5]), we can write the integral representations for Fk,p,"(z) and eFk,p,"(1/z) :

If z 2 G

−
r , then

Fk,p,"(z) =
⇥

'(z)

⇤k⇥
'

0
(z)

⇤1/(p−")
+

1

2⇡i

Z

Lr

⇥

'(⇣)

⇤k⇥
'

0
(⇣)

⇤1/(p−")

⇣ − z

d⇣. (7)

Further, if z 2 GR, then

e

Fk,p,"

✓

1

z

◆

=

⇥

'1(z)
⇤k− 2

p−"
⇥

'

0
1(z)

⇤1/(p−")

− 1

2⇡i

Z

LR

⇥

'1(⇠)
⇤k− 2

p−"
⇥

'

0
1(⇠)

⇤1/(p−")

⇠ − z

d⇠. (8)

By using Cauchy integral formulas, we obtain

f(z) =

1

2⇡i

Z

Γ1

f(⇣)

⇣ − z

d⇣ − 1

2⇡i

Z

Γ2

f(⇠)

⇠ − z

d⇠, z 2 G.

If z 2 G2 or z 2 G

−
1 , then

1

2⇡i

Z

Γ1

f(⇣)

⇣ − z

d⇣ − 1

2⇡i

Z

Γ2

f(⇠)

⇠ − z

d⇠ = 0. (9)

We define

I1(z) :=
1

2⇡i

Z

Γ1

f(⇣)

⇣ − z

d⇣ and I2(z) :=
1

2⇡i

Z

Γ2

f(⇠)

⇠ − z

d⇠.

The function I1 determines the analytic functions I

+
1 and I

−
1 for z 2 G1 and z 2 G

−
1 , respectively, while

the function I2 determines the analytic functions I+2 and I

−
2 for z 2 G2 and z 2 G

−
2 , respectively.

Lemma 1 [14]. Let Γ 2 S, ! 2 Ap(Γ), 1 < p < 1, and ✓ > 0. If f 2 L

p),✓
(Γ,!), then f

+ 2 E

p),✓
(G,!)

and f

− 2 E

p),✓
(G

−
,!).

For f0 2 L

p),✓
(T,!) and !0 2 Ap(T), Lemma 1 implies that f+

0 2 E

p),✓
(U,!0) and f

−
0 2 E

p),✓
(U−

,!0)

such that f−
0 (1) = 0. Similarly, for f1 2 L

p),✓
(T,!) and !1 2 Ap(T), Lemma 1 implies that f+

1 2 E

p),✓
(U,!1)

and f

−
1 2 E

p),✓
(U−

,!1) such that f−
0 (1) = 0. Thus, by (6), for k = 0, 1, 2, 3, . . . , we get

ak(f) =
1

2⇡i

Z

T

f

+
0 (w)

w

k+1
dw − 1

2⇡i

Z

T

f

−
0 (w)

w

k+1
dw =

1

2⇡i

Z

T

f

+
0 (w)

w

k+1
dw

and

eak(f) =
1

2⇡i

Z

T

f

+
1 (w)

w

k+1
dw − 1

2⇡i

Z

T

f

−
1 (w)

w

k+1
dw =

1

2⇡i

Z

T

f

+
1 (w)

w

k+1
dw.
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Hence, ak and eak, k = 1, 2, . . . , are the Taylor coefficients of f

+
0 2 E

p),✓
(U,!0) and f

+
1 2 E

p),✓
(U,!1),

respectively.

Lemma 2. Let ! 2 Ap(T), 1 < p < 1, and ✓ > 0. If g 2 Lp),✓
(T,!), then

⌦r(g
+
, ·)p),✓,!  c⌦r(g, ·)p),✓,!

for r = 1, 2, 3, . . . .

Proof. Let g 2 Lp),✓
(T,!). First, we show that

⌦r

�

ST(g), ·
�

p),✓,!
 c⌦r(g, ·)p),✓,!.

By using the change of variables ⇣ = ue

ist and the Fubini theorem, we get

σ

r
h

⇥

ST(g)(w)
⇤

=

1

h

h
Z

0

∆

r
tST(g(w))dt

=

1

h

h
Z

0

r
X

s=0

(−1)

r+s+1

✓

r

s

◆

ST(g
�

we

ist
�

dt

=

1

h

h
Z

0

r
X

s=0

(−1)

r+s+1

✓

r

s

◆

8

<

:

1

2⇡i

(P.V )

Z

T

g(⇣)

⇣ − we

ist
d⇣

9

=

;

dt

=

1

h

h
Z

0

r
X

s=0

(−1)

r+s+1

✓

r

s

◆

8

<

:

1

2⇡i

(P.V )

Z

T

g(ue

ist
)

ue

ist − we

ist
e

ist
du

9

=

;

dt

=

1

h

h
Z

0

r
X

s=0

(−1)

r+s+1

✓

r

s

◆

8

<

:

1

2⇡i

(P.V )

Z

T

g(ue

ist
)

u− w

du

9

=

;

dt

=

1

2⇡i

(P.V )

Z

T

⇢

1

h

Z h

0

Xr

s=0
(−1)

r+s+1

✓

r

s

◆

g(ue

ist
)dt

�

u− w

du

=

1

2⇡i

(P.V )

Z

T

⇢

1

h

Z h

0
∆

r
t (g(u)dt

�

u− w

du = ST
⇥

σ

r
hg(w)

⇤

.

Taking the norm and supremum over h  δ and applying Theorem A, we find

⌦r

�

ST(g), ·
�

p),✓,!
= sup

hδ

�

�

σ

r
h[ST(g)(w)]

�

�

Lp),✓(T,!)
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= sup

hδ

�

�

ST[σ
r
hg(w)]

�

�

Lp),✓(T,!)

 sup

hδ
c

�

�

σ

r
hg(w)

�

�

Lp),✓(T,!)

 c sup

hδ

�

�

σ

r
hg(w)

�

�

Lp),✓(T,!) = ⌦r(g, ·)p),✓,!. (10)

Hence, by (5) and (10), we obtain

⌦r

�

g

+
, ·
�

p),✓,!
 c

n

⌦r

�

g, ·
�

p),✓,!
+ ⌦r

�

ST(g), ·
�

p),✓,!

o

 c⌦r

�

g, ·)p),✓,!.

Lemma 2 is proved.

Lemma 3 [13]. Let g 2 Ep),✓
(U,!), ! 2 Ap(T), 1< p <1, and ✓ > 0. If

Xn

k=0
γk(g)w

k is the n th
partial sum of the Taylor series of g at the origin, then there exists a positive constant c independent of n = 1, 2, . . .

and such that
�

�

�

�

�

g(w)−
n
X

k=0

γk(g)w
k

�

�

�

�

�

Lp),✓(T,!)

 c⌦r

✓

g,

1

n

◆

p),✓,!

, r = 1, 2, 3, . . . .

3. Proof of Theorem 1

Let ! 2 Ap(Γ), !0 2 Ap(T), !1 2 Ap(T), 1 < p < 1, ✓ > 0. Also let

Γ := Γ1 [ Γ

−
2 ,

where Γ1,Γ2 2 S and f 2 Ep),✓
(G,!). We get

�

�

f −Rn(f)
�

�

Lp),✓(Γ,!)

�

�

f −Rn(f)
�

�

Lp),✓
�

Γ1,!
�

+

�

�

f −Rn(f)
�

�

Lp),✓(Γ2,!)
.

Since f 2 Ep),✓
(G,!) , we have f0 2 Lp),✓

�

Γ1,!
�

and f1 2 Lp),✓
(Γ2,!). For ⇣ 2 Γ1 and ⇠ 2 Γ2, by means

of (3), (4), and (6), we obtain

f(⇣) =

⇥

f

+
0

�

'(⇣)

�

− f

−
0

�

'(⇣)

�

]

�

'

0
(⇣)

�1/(p−") (11)

and

f(⇠) =

h

f

+
1

�

'1(⇠)
�

− f

−
1

�

'1(⇠)
�

i

�

'1(⇠)
�−2/(p−")�

'

0
1(⇠)

�1/(p−")
. (12)

It suffices to prove the validity of the inequalities

�

�

f −Rn(f)
�

�

Lp),✓
�

Γ1,!
�  c

(

⌦r

✓

f0,
1

n

◆

p),✓,!0

+ ⌦r

✓

f1,
1

n

◆

p),✓,!1

)

(13)
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and

kf −Rn(f)kLp),✓(Γ2,!)
 c

(

⌦r

✓

f0,
1

n

◆

p),✓,!0

+ ⌦r

✓

f1,
1

n

◆

p),✓,!1

)

. (14)

First, we prove estimation (13). We take z

0 2 G

−
1 . Thus, by relations (7) and (11), we obtain

n
X

k=0

akFk,p,"(z
0
) =

⇥

'

0
(z

0
)

⇤1/(p−")
n
X

k=0

ak

⇥

'(z

0
)

⇤k

+

1

2⇡i

Z

Γ1

⇥

'

0
(⇣)

⇤1/(p−")
Xn

k=0
ak

⇥

'(⇣)

⇤k

⇣ − z

0 d⇣

=

⇥

'

0
(z

0
)

⇤1/(p−")
n
X

k=0

ak

⇥

'

�

z

0�⇤k

+

1

2⇡i

Z

Γ1

⇥

'

0
(⇣)

⇤1/(p−")
Xn

k=0
ak

⇥

'(⇣)

⇤k

⇣ − z

0 d⇣

− 1

2⇡i

Z

Γ1

⇥

'

0
(⇣)

⇤1/(p−")
f

+
0

�

'(⇣)

�

⇣ − z

0 d⇣

+

1

2⇡i

Z

Γ1

⇥

'

0
(⇣)

⇤1/(p−")
f

−
0

�

'(⇣)

�

⇣ − z

0 d⇣ +

1

2⇡i

Z

Γ1

f(⇣)

⇣ − z

0d⇣.

Since
⇥

'

0
(⇣)

⇤1/(p−")
f

−
0

�

'(⇣)

�

2 E

1
(G

−
1 ),

we get

−
⇥

'

0
(z

0
)

⇤1/(p−")
f

−
0

�

'(z

0
)

�

=

1

2⇡i

Z

Γ1

⇥

'

0
(⇣)

⇤1/(p−")
f

−
0

�

'(⇣)

�

⇣ − z

0 d⇣.

Therefore,

n
X

k=0

akFk,p,"(z
0
) =

⇥

'

0
(z

0
)

⇤1/(p−")
n
X

k=0

ak

⇥

'(z

0
)

⇤k

− 1

2⇡i

Z

Γ1

⇥

'

0
(⇣)

⇤1/(p−")
h

f

+
0

�

'(⇣)

�

−
Xn

k=0
ak

⇥

'(⇣)

⇤k
i

⇣ − z

0 d⇣

−
⇥

'

0
(z

0
)

⇤1/(p−")
f

−
0

�

'(z

0
)

�

+

1

2⇡i

Z

Γ1

f(⇣)

⇣ − z

0d⇣. (15)
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If z0 2 G

−
2 , then by using relations (2) and (12) we obtain

n
X

k=1

eak
e

Fk,p,"(1/z
0
) = − 1

2⇡i

Z

Γ2

⇥

'1(⇠)
⇤1/(p−")⇥

'1(⇠)
⇤−2/(p−")

Xn

k=1
eak

⇥

'1(⇠)
⇤k

⇠ − z

0 d⇠

=

1

2⇡i

Z

Γ2

⇥

'1(⇠)
⇤1/(p−")⇥

'1(⇠)
⇤−2/(p−")

⇣

f

+
1

�

'1(⇠)
�

−
Xn

k=1
eak

⇥

'1(⇠)
⇤k
⌘

⇠ − z

0 d⇠

=

1

2⇡i

Z

Γ2

⇥

'1(⇠)
⇤1/(p−")⇥

'1(⇠)
⇤−2/(p−")

f

−
1

�

'1(⇠)
�

⇠ − z

0 d⇠ − 1

2⇡i

Z

Γ2

f(⇠)

⇠ − z

0d⇠

and, by virtue of the Cauchy integral formula for

�

'1(⇠)
�−2/(p−")�

'

0
1(⇠)

�1/(p−")
f

−
1

�

'1(⇠)
�

2 E

1
(G2),

we find

n
X

k=1

eak
e

Fk,p,"(1/z
0
) = − 1

2⇡i

Z

Γ2

f(⇠)

⇠ − z

0d⇠

+

1

2⇡i

Z

Γ2

⇥

'1(⇠)
⇤

1
p−"
⇥

'1(⇠)
⇤− 2

p−"

⇣

f

+
1

�

'1(⇠)
�

−
Xn

k=1
eak

⇥

'1(⇠)
⇤k
⌘

⇠ − z

0 d⇠. (16)

Thus, for z0 2 G

−
1 , by (15), (16), and (9), we get

n
X

k=0

akFk,p,"(z
0
) +

n
X

k=1

eak
e

Fk,p,"(1/z
0
)

=

⇥

'

0
(z

0
)

⇤1/(p−")
n
X

k=0

ak

⇥

'(z

0
)

⇤k

− 1

2⇡i

Z

Γ1

⇥

'

0
(⇣)

⇤1/(p−")
h

f

+
0

�

'(⇣)

�

−
Xn

k=0
ak

⇥

'(⇣)

⇤k
i

⇣ − z

0 − d⇣

−
⇥

'

0
(z

0
)

⇤1/(p−")
f

−
0

�

'(z

0
)

�

+

1

2⇡i

Z

Γ2

⇥

'1(⇠)
⇤

1
p−"
⇥

'1(⇠)
⇤− 2

p−"

⇣

f

+
1

�

'1(⇠)
�

−
Xn

k=1
eak

⇥

'1(⇠)
⇤k
⌘

⇠ − z

0 d⇠.



APPROXIMATION BY RATIONAL FUNCTIONS ON DOUBLY CONNECTED DOMAINS 1133

Further, taking the limit as z0 ! z 2 Γ1 along all nontangential paths outside Γ1, we obtain

f(z)−
n
X

k=0

akFk,p,"(z)−
n
X

k=1

eak
e

Fk,p,"(1/z)

=

⇥

'

0
(z)

⇤1/(p−")

"

f

+
0 ('(z))−

n
X

k=0

ak

⇥

'(z)

⇤k

#

− 1

2

⇥

'

0
(z)

⇤1/(p−")

"

f

+
0 ('(z))−

n
X

k=0

ak

⇥

'(z)

⇤k

#

+ SΓ1

"

⇥

'

0⇤1/(p−")

 

�

f

+
0 ◦ '

�

−
n
X

k=0

ak [']
k

!#

(z)

− 1

2⇡i

Z

Γ2

⇥

'1(⇠)
⇤

1
p−"
⇥

'1(⇠)
⇤− 2

p−"

⇣

Xn

k=1
eak

⇥

'1(⇠)
⇤k − f

+
1

�

'1(⇠)
�

⌘

⇠ − z

d⇠ (17)

a.e. on Γ1. Since ! 2 Ap(Γ), applying Theorem A for Γ1 and using (17) and the Minkowski inequality, we get

�

�

f −Rn(f)
�

�

Lp),✓(Γ1,!)
 c

8

<

:

�

�

�

�

�

f

+
0 (w)−

n
X

k=0

akw
k

�

�

�

�

�

Lp),✓(T,!0)

+

�

�

�

�

�

f

+
1 (w)−

n
X

k=1

eakw
k

�

�

�

�

�

Lp),✓(T,!1)

9

=

;

.

The Faber coefficients ak and eak are the Taylor coefficients of f+
0 and f

+
1 , respectively, at the origin. Since

!0 2 Ap(T) and !1 2 Ap(T), by using Lemmas 3 and 2, we get

�

�

f −Rn(f)
�

�

Lp),✓(Γ1,!)
 c

(

⌦r

✓

f0,
1

n

◆

p),✓,!0

+ ⌦r

✓

f1,
1

n

◆

p),✓,!1

)

. (18)

Let z00 2 G2. Then by virtue of (8) and (12), we obtain

n
X

k=1

eak
e

Fk,p,"(1/z
00
) =

⇥

'

0
1(z

00
)

⇤

1
p−"
⇥

'1(z
00
)

⇤− 2
p−"

n
X

k=1

eak

⇥

'1(z
00
)

⇤k

− 1

2⇡i

Z

Γ2

⇥

'

0
1(⇠)

⇤

1
p−"
⇥

'1(⇠)
⇤− 2

p−"
Xn

k=1
eak

⇥

'1(⇠)
⇤k

⇠ − z

00 d⇠

=

⇥

'

0
1(z

00
)

⇤

1
p−"
⇥

'1(z)
⇤− 2

p−"

n
X

k=1

eak

⇥

'1(z
00
)

⇤k
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+

1

2⇡i

Z

Γ2

⇥

'

0
1(⇠)

⇤

1
p−"
⇥

'1(⇠)
⇤− 2

p−"

⇣

f

+
1

�

'1(⇠)
�

−
Xn

k=1
eak

⇥

'1(⇠)
⇤k
⌘

⇠ − z

00 d⇠

− 1

2⇡i

Z

Γ2

⇥

'

0
1(⇠)

⇤

1
p−"
⇥

'1(⇠)
⇤− 2

p−"
f

−
1

�

'1(⇠)
�

⇠ − z

00 d⇠ − 1

2⇡i

Z

Γ2

f(⇠)

⇠ − z

00d⇠.

Since
�

'1(⇠)
�−2/(p−") �

'

0
1(⇠)

�1/(p−")
f

−
1

�

'1(⇠)
�

2 E

1
(G2),

we find

⇥

'

0
1(z

00
)

⇤1/(p−") ⇥
'1(z

00
)

⇤−2/(p−")
f

−
1

�

'1(z
00
)

�

=

1

2⇡i

Z

Γ2

⇥

'

0
1(⇠)

⇤1/(p−")⇥
'1(⇠)

⇤−2/(p−")
f

−
1

�

'1(⇠)
�

⇠ − z

00 d⇠.

This equality implies that

n
X

k=1

eak
e

Fk,p,"(1/z
00
) =

⇥

'

0
1(z

00
)

⇤1/(p−") ⇥
'1(z

00
)

⇤− 2
p−"

n
X

k=1

eak

⇥

'1(z
00
)

⇤k

+

1

2⇡i

Z

Γ2

⇥

'

0
1(⇠)

⇤1/(p−")⇥
'1(⇠)

⇤− 2
p−"

⇣

f

+
1

�

'1(⇠)
�

−
Xn

k=1
eak

⇥

'1(⇠)
⇤k
⌘

⇠ − z

00 d⇠

−
⇥

'

0
1(z

00
)

⇤1/(p−") ⇥
'1(z

00
)

⇤− 2
p−"

f

−
1

�

'1(z
00
)

�

− 1

2⇡i

Z

Γ2

f(⇠)

⇠ − z

00d⇠. (19)

Let z00 2 G1. Thus, by (1) and (11), we get

n
X

k=0

akFk,p,"(z
00
) =

1

2⇡i

Z

Γ1

('

0
(⇣))

1
p−"

Xn

k=0
ak

⇥

'(⇣)

⇤k

⇣ − z

00 d⇣

=

1

2⇡i

Z

Γ1

('

0
(⇣))

1
p−"

⇣

Xn

k=0
ak

⇥

'(⇣)

⇤k − f

+
0

�

'(⇣)

�

⌘

⇣ − z

00 d⇣

+

1

2⇡i

Z

Γ1

�

'

0
(⇣)

�

1
p−"

f

−
0 ('(⇣))

⇣ − z

00 d⇣ +

1

2⇡i

Z

Γ1

f(⇣)

⇣ − z

00d⇣,
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and, by using the Cauchy integral formula for
�

'

0
(⇣)

�

1
p−"

f

−
0 ('(⇣)) 2 E

1
(G

−
1 ), we obtain

n
X

k=0

akFk,p,"(z
00
) =

1

2⇡i

Z

Γ1

f(⇣)

⇣ − z

00d⇣

+

1

2⇡i

Z

Γ1

�

'

0
(⇣)

�

1
p−"

⇣

Xn

k=0
ak

⇥

'(⇣)

⇤k − f

+
0

�

'(⇣)

�

⌘

⇣ − z

00 d⇣. (20)

For z00 2 G2, relations (19), (20), and (9) imply that

n
X

k=0

akFk,p,"(z
00
) +

n
X

k=1

eak
e

Fk,p,"(1/z
00
)

=

⇥

'

0
1(z

00
)

⇤1/(p−") ⇥
'1(z

00
)

⇤− 2
p−"

n
X

k=1

eak

⇥

'1(z
00
)

⇤k

+

1

2⇡i

Z

Γ2

⇥

'

0
1(⇠)

⇤1/(p−")⇥
'1(⇠)

⇤− 2
p−"

⇣

f

+
1

�

'1(⇠)
�

−
Xn

k=1
eak

⇥

'1(⇠)
⇤k
⌘

⇠ − z

00 d⇠

−
⇥

'

0
1(z

00
)

⇤1/(p−") ⇥
'1(z

00
)

⇤− 2
p−"

f

−
1

�

'1(z
00
)

�

+

1

2⇡i

Z

Γ1

�

'

0
(⇣)

�

1
p−"

⇣

Xn

k=0
ak

⇥

'(⇣)

⇤k − f

+
0

�

'(⇣)

�

⌘

⇣ − z

00 d⇣.

Passing to the limit as z00 ! z 2 Γ2 along all nontangential paths inside Γ2, by virtue of (11), we obtain

f(z)−
n
X

k=0

akFk,p,"(z)−
n
X

k=1

eak
e

Fk,p,"(1/z)

=

⇥

'

0
1(z)

⇤1/(p−")⇥
'1(z)

⇤− 2
p−"

f

+
1 ('1(z))

− 1

2

⇥

'

0
1(z)

⇤1/(p−")⇥
'1(z)

⇤− 2
p−"

"

n
X

k=1

eak

⇥

'1(z)
⇤k − f

+
1

�

'1(z)
�

#

− SΓ2

"

⇥

'

0
1

⇤1/(p−")
['1]

− 2
p−"

 

n
X

k=1

eak ['1]
k −

�

f

+
1 ◦ '1

�

!#

(z)

− 1

2⇡i

Z

Γ1

�

'

0
(⇣)

�

1
p−"

⇣

Xn

k=0
ak

⇥

'(⇣)

⇤k − f

+
0

�

'(⇣)

�

⌘

⇣ − z

d⇣ (21)
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a.e. on Γ2. Since ! 2 Ap(Γ), by applying Theorem A for Γ2 and using (17) and the Minkowski inequality, we get

�

�

f −Rn(f)
�

�

Lp),✓(Γ2,!)
 c

8

<

:

�

�

�

�

�

f

+
0 (w)−

n
X

k=0

akw
k

�

�

�

�

�

Lp),✓(T,!0)

+

�

�

�

�

�

f

+
1 (w)−

n
X

k=1

eakw
k

�

�

�

�

�

Lp),✓(T,!1)

9

=

;

.

The Faber coefficients ak and eak are the Taylor coefficients of f+
0 and f

+
1 , respectively, at the origin. Since

!0 2 Ap(T) and !1 2 Ap(T), by using Lemmas 3 and 2, we finally obtain

�

�

f −Rn(f)
�

�

Lp),✓(Γ2,!)
 c

(

⌦r

✓

f0,
1

n

◆

p),✓,!0

+ ⌦r

✓

f1,
1

n

◆

p),✓,!1

)

. (22)

Hence, (18) and (22) complete the proof of Theorem 1.
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