M‘ Acta UNIV. SAPIENTIAE, MATHEMATICA, 13, 2 (2021) 427-441

DOI: 10.2478 /ausm-2021-0026

A new solution to the Rhoades’ open
problem with an application

Nihal Ozgiir Nihal Tag
Balikesir University, Balikesir University,
Department of Mathematics, Department of Mathematics,
10145 Balikesir, TURKEY 10145 Balikesir, TURKEY
email: nihal@balikesir.edu.tr email: nihaltas@balikesir.edu.tr

Abstract. We give a new solution to the Rhoades’ open problem on the
discontinuity at fixed point via the notion of an S-metric. To do this, we
develop a new technique by means of the notion of a Zamfirescu mapping.
Also, we consider a recent problem called the “fixed-circle problem” and
propose a new solution to this problem as an application of our technique.

1 Introduction and preliminaries

Fixed-point theory has been extensively studied by various aspects. One of
these is the discontinuity problem at fixed points (see [1, 2, 3, 4, 5, 6, 24, 25, 26,
27] for some examples). Discontinuous functions have been widely appeared in
many areas of science such as neural networks (for example, see [7, 12, 13, 14]).
In this paper, we give a new solution to the Rhoades’ open problem (see [28§]
for more details) on the discontinuity at fixed point in the setting of an S-
metric space which is a recently introduced generalization of a metric space.
S-metric spaces were introduced in [29] by Sedgi et al., as follows:

Definition 1 [29] Let X be a nonempty set and S : X x X x X — [0,00) a
function satisfying the following conditions for all x,y,z,a € X:
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S1) S(x,y,2z) =0 if and only if x =y =z,

S2) S(x,y,2) < S(x,x,a) +S(y,y,a) +S(z,z,a).

Then S is called an S-metric on X and the pair (X, S) is called an S-metric
space.

Relationships between a metric and an S-metric were given as follows:

Lemma 1 [9] Let (X,d) be a metric space. Then the following properties are
satisfied:

1. Sa(x,y,z) = d(x,z) + d(y,z) for all x,y,z € X is an S-metric on X.
2. xn — x in (X,d) if and only if xn, — x in (X, Sq).

3. {xn} is Cauchy in (X, d) if and only if {xn} is Cauchy in (X,Sq).

4. (X, d) is complete if and only if (X,Sq) is complete.

The metric Sq was called as the S-metric generated by d [17]. Some examples
of an S-metric which is not generated by any metric are known (see [9, 17] for
more details).

Furthermore, Gupta claimed that every S-metric on X defines a metric dg
on X as follows:

dS(X>U) :S(X>X>U)+S(y>yax)> (1)

for all x,y € X [8]. However, since the triangle inequality does not satisfied
for all elements of X everywhen, the function ds(x,y) defined in (1) does not
always define a metric (see [17]).

In the following, we see an example of an S-metric which is not generated
by any metric.

Example 1 [17] Let X = R and the function S : X x X x X — [0, 00) be defined
as
S(xy,z) =x—zl+ x +z—2y|,

for allx,y,z € R. Then S is an S-metric which is not generated by any metric
and the pair (X,S) is an S-metric space.

The following lemma will be used in the next sections.
Lemma 2 [29] Let (X,S) be an S-metric space. Then we have

S(x%,%,y) = Sy,y,x).
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In this paper, our aim is to obtain a new solution to the Rhoades’ open
problem on the existence of a contractive condition which is strong enough to
generate a fixed point but which does not force the map to be continuous at
the fixed point. To do this, we inspire of a result of Zamfirescu given in [33].

On the other hand, a recent aspect to the fixed point theory is to consider
geometric properties of the set Fix(T), the fixed point set of the self-mapping
T. Fixed-circle problem (resp. fixed-disc problem) have been studied in this
context (see [6, 18, 19, 20, 21, 22, 23, 26, 27, 30, 31]). As an application,
we present a new solution to these problems. We give necessary examples to
support our theoretical results.

2 Main results

From now on, we assume that (X,S) is an S-metric space and T: X — X is a
self-mapping. In this section, we use the numbers defined as

% 1a (%, ) + d (y, Ty)]

Mz(x,y)zmaX{ad(x,y),z [d(x,Ty)er(y,TX)]}

<
2
and

Mg (X>U)=max{ CIS(X,X,IJ) %[ (X,X,TX)—FS(y,U)Ty)]) })

518 (%, Ty) + S (y,y, Tx)]

where a,b € [0,1) and c € [0, 12]
We give the following theorem as a new solution to the Rhoades’ open
problem.

Theorem 1 Let (X,S) be a complete S-metric space and T a self-mapping on
X satisfying the conditions

i) There exists a function ¢ : RT — RT such that d(t) < t for each t > 0
and

S(Tx, Tx, Ty) < ¢ (Mg (x,y)) ,

for all x,y € X,

ii) There exists a & = &(&) > 0 such that ¢ < MS (x,y) < & + & implies
S (Tx, Tx, Ty) < ¢ for a given ¢ > 0.

Then T has a unique fized point w € X. Also, T is discontinuous at w if and
only if E%Mg (x,u) #£0.
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Proof. At first, we define the number

£ — 2z e
B el L B P

Clearly, we have & < 1.
By the condition (i), there exists a function ¢ : R — RT such that ¢(t) < t
for each t > 0 and

S (T, T, Ty) < ¢ (ME (x,v))),

for all x,y € X. Using the properties of ¢, we obtain
S (T, 7, Ty) < M2 (x,y), (2)

whenever Mg (x,y) > 0.

Let us consider any xo € X with xo # Txp and define a sequence {x,} as
Xni1 = Txn = T for all n = 0,1,2,3,.... Using the condition (i) and the
inequality (2), we get

S (xmyXnyXng1) = S (M1, Txn—1, Txn) < ¢ (Mi (Xn—hxn)) (3>

< Mg (Xn—l ) Xn)
as (anhxnfhxn) )
= max % [S (anhxnthxnf” +8 (Xn)xTuTxnﬂ )
% (S (XTL71 y Xn—T1, TXn) +8 (Xna Xn, Txn )]
aS (Xn—l y Xn—1, Xn) )
[S (anl y Xn—1, Xn) +S8 (XTU Xny Xn+1 )] )
[S (Xn—1, Xn—1y Xn41) + S (Xn, Xny Xn )]

= max

N‘ON\O‘

as (Xn—1 y Xn—T, Xn) )
= max{ 2[S (xn1,Xn_1,%n) + S (Xn, Xn, Xn41)]
%S (Xn—1y Xn—1, Xn+1)

Assume that Mg (Xn_1y%n) = aS (Xn_1,%Xn_1,X%n). Then using the inequality
(3), we have

S (Xn)xn>xn+1) <a$S (anhxnfhxn) < E,S (xnfhxnfhxn) <S8 (anhxnfhxn)

and so
) (Xnaxn)xn-H) <S8 (Xn—bxn—hxn) . (4)
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Let M3 (xn_1,Xn) = % [S (Xn_1yXn_1,%Xn) + S (Xn, Xn, Xn+1)] . Again using the
inequality (3), we get

b
S (Xnyxn)xn—H) < E [8 (Xn—hxn—])xn) +S (Xnyxn)xn—H ﬂ 5

which implies

b b
(] - > S (Xnaxn)xn+1) <3S (X‘nfhxnf]axn)

2 2
and hence
S (men)XnH) < mS (anhxnfhxn) <&S (anhxnfhxn) .
This yields
S (Xna Xny Xn+1 ) <S (an1 y Xn—1, Xn) . (5)

Suppose that MS (xn_1,Xn) = 58 (Xn—1yXn-1yXn41) . Then using the in-
equality (3), Lemma 2 and the condition (S2), we obtain

C C
S (XmeXnH) < 38 (anhxnfhxnﬂ) = ES (XnH)XnH)XnJ)

2
C
2 (S (Xn—hxn—hxn) +28 (XTL—H)XTL—H)XTI)]
C
2
C

IN

= 3§ (Xn—1 y Xn—T1, Xn) +cS (Xn-‘r] y Xn+1) XTL)

= ES (Xn—1y Xn—1yXn) + €S (Xn, Xn, Xn41)

which implies

C
(] - C) S (XTUXTUXTL+1) < ES (Xn—hxn—hxn) .

Considering this, we find

C

S (Xny Xn, Xng1) < m

S (Xn—hxn—])xn) < ES (Xn—hxn—hxn)

and so
S (Xny Xny Xnt1) < S (Xn—1yXn—1yXn) (6)
If we set oy = S (Xn, Xn, Xn+1), then by the inequalities (4), (5) and (6), we
find
On < K1, (7)
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that is, o, is a strictly decreasing sequence of positive real numbers whence
the sequence oy tends to a limit o > 0.
Assume that o > 0. There exists a positive integer k € N such that n > k
implies
x < oty < o+ (). (8)

Using the condition (ii) and the inequality (7), we get
S (Txn—1, Txn—1, Txn) = 8 (X, Xny Xng1) = o < &, 9)

for n > k. Then the inequality (9) contradicts to the inequality (8). Therefore,
it should be o = 0.

Now we prove that {x,} is a Cauchy sequence. Let us fix an ¢ > 0. Without
loss of generality, we suppose that 6 (¢) < €. There exists k € N such that

S (Xnyxn)XnH) = 0p < Za

for n > ksince o, — 0. Using the mathematical induction and the Jachymski’s
technique (see [10, 11] for more details), we show

S (Xiy Xy Xign) < €+ 35 (10)

2 Y
for any n € N. At first, the inequality (10) holds for n = 1 since

d o
S(Xk)xkaxk+1) = o < Z < £+§

Assume that the inequality (10) holds for some n. We show that the inequality
(10) holds for n + 1. By the condition (S2), we get

S (Xky Xy Xiam41) < 28 (i, Xay Xkr 1) + S (X1, Xiern 1y Xy 1) -
From Lemma 2, we have
S (Xknt1y Xkt 15 Xket1) = S (Xket 1y Xk 1y Xk 1)
and so it suffices to prove

S (Xkt 1y Xkt 1y Xigng1) < €

To do this, we show
Mg(xk,xk-i-n) <e+6.
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Then we find
)
a8 (Xiy Xiy Xipn ) < S(Xiey Xy Xign) < € + 7
b
5 [S (X1, Xiey Xk41) + S (Xiegny Xiegny Xint1)]
<8 (Xxy Xy Xkt 1) + S (Xigny Xy Xkegmt1)
8,58
47372
and
c
7 [S (Xxy X6y Xkrm1) + S (Xieiny Xk X 1)]
c
< 7 [48 (%1, Xiey Xkt 1) + S (Xag 1y Xiet 1y Xk 146n) + S (Xiey Xiey Xiegn )]
S S 11
. [ZS(xk,xk,ka) n (Xk+1axk2+1>xk+1+n) (Xk,X;,ka) (11)

<c §+£+§ <e+d
2 2 '

Using the definition of M3 (xy,Xksn), the condition (ii) and the inequalities
(10) and (11), we obtain

S
M3 (i, Xkgn) < €+ 0
and so
S (X4 1y Xk 1y Xagna1) < €
Hence we get

S Xy Xky Xignt1) < €+ 7

whence {x,,} is Cauchy. From the completeness hypothesis, there exists a point
u € X such that x, — u for n — oco. Also we get

lim Tx, = lim x4 = u.
n—oo n—oo

Now we prove that u is a fixed point of T. On the contrary, assume that u is
not a fixed point of T. Then using the condition (i) and the property of ¢, we
obtain

S(Tu, Tu, Txn) < d(ME(u,xn)) < M3 (1, xn)
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] aS(n ), § IS, T) + S X T
- max S (S (1, Tn) + S (X, X, Tut) ’

Using Lemma 2 and taking limit for n — oo, we find

S(Tu, Tu, u) < max {ZS(LL, u, Tu), =S(u, u, Tu)} < S§(Tu, Tu,u),

¢
2
a contradiction. It should be Tu = u. We show that u is the unique fixed point
of T. Let v be another fixed point of T such that u # v. From the condition
(i) and Lemma 2, we have

S(Tu,Tu, ™) = S(u,w,v) < ¢(MF(w,v) < Mi(w,v)
~ ax aS(u,u,v), g [S(uw,u, Tu) + S(v,v, V)],
5 1S(uyu, W) + S(v, v, Tu)]
= max{aS(u,u,v),cS(u,u,v)} < S(u,u,v),

a contradiction. So it should be uw = v. Therefore, T has a unique fixed point

ue X
Finally, we prove that T is discontinuous at u if and only if lim M3 (x, 1) #
xX—u

0. To do this, we can easily show that T is continuous at u if and only if
lim M (x,u) = 0. Suppose that T is continuous at the fixed point u and
X—u

Xn — u. Hence we get Tx,, — Tu = u and using the condition (S2), we find
S(xny Xn,y Txn) < 28(xny Xn, w) + S(Txn, Txn,u) — 0,
as Xxp — U. So we get XligluMg(xn,u) = 0. On the other hand, assume
lim M3 (xn,u) = 0. Thennwe obtain S(xn,Xn, Txn) — 0 as x, — u, which
?Erl?)ﬁes Txn — Tu =u. Consequently, T is continuous at u. O
We give an example.

Example 2 Let X ={0,2,4,8} and (X,S) be the S-metric space defined as in
Ezxzample 1. Let us define the self-mapping T : X — X as
4 5 x<4
Te= { 2, x>4 7

for all x € {0,2,4,8}. Then T satisfies the conditions of Theorem 1 with a =
%,b =c =0 and has a unique fixed point x = 4. Indeed, we get the following
table :

S(Tx, Tx,Ty) =0 and 3 <M (x,y) <6 when x,y <4

S(Tx, T, Ty) =4 and 6 <M (x,y) <12 whenx <4,y >4 .

S(T,Tx,Ty) =4 and 6 <M (x,y) <12 when x >4,y <4
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Hence T satisfies the conditions of Theorem 1 with

5 ; t>6
%;t<6

and

6 o e>3
6(8)_{6—5 ;o e<3

Now we give the following results as the consequences of Theorem 1.

Corollary 1 Let (X,S8) be a complete S-metric space and T a self-mapping
on X satisfying the conditions

i) S (Tx, Tx, Ty) < MS (x,y) for any x,y € X with M3 (x,y) >0,

ii) There exists a & = &(e) > 0 such that ¢ < M3 (x,y) < € + & implies
S (Tx, Tx, Ty) < ¢ for a given ¢ > 0.

Then T has a unique fized point w € X. Also, T is discontinuous at w if and
only if E%Mg (x,u) #0.

Corollary 2 Let (X,S) be a complete S-metric space and T a self-mapping
on X satisfying the conditions

i) There exists a function ¢ : RT — RT such that &(S(x,x,y)) < S(x,%,y)
and S(Tx, Tx, Ty) < ¢(S(x,x,y)),

ii) There exists a & =8 (e) > 0 such that e <t < e+ & implies d(t) < ¢ for
any t >0 and a given € > 0.

Then T has a unique fixed point u € X.

The following theorem shows that the power contraction of the type Mg (x,y)
allows also the possibility of discontinuity at the fixed point.

Theorem 2 Let (X,S) be a complete S-metric space and T a self-mapping on
X satisfying the conditions
i) There exists a function ¢ : RT — RT such that &(t) < t for each t > 0
and
S (T, T, TMy) < ¢ (Mff (x,y)) ,

where

oo a8 (x,%,Y), 2 1S (%%, T™) + 8 (u, y, T™y)],
M. ("’”)max{ €15 (%, T™) + S (y,y, T™x)] }

for all x,y € X,
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ii) There evists a & = &(e) > 0 such that ¢ < M3 (x,y) < & + & implies
S (T, T™x, T™y) < ¢ for a given € > 0.

Then T has a unique fixed point w € X. Also, T is discontinuous at w if and
only if ;%Mg* (x,u) #£0.

Proof. By Theorem 1, the function T™ has a unique fixed point u. Hence we
have

Tu=TT"MMu=T"Tu

and so Tu is another fixed point of T™. From the uniqueness of the fixed point,
we obtain Tu = u, that is, T has a unique fixed point u. U

We note that if the S-metric S generates a metric d then we consider The-
orem 1 on the corresponding metric space as follows:

Theorem 3 Let (X, d) be a complete metric space and T a self-mapping on X
satisfying the conditions

i) There exists a function ¢ : R™ — RT such that d(t) < t for each t > 0
and

d(Tx, Ty) < & (M (x,y)),

for all x,y € X,

ii) There exists a & = d(e) > 0 such that ¢ < M, (x,y) < € + & implies
d(Tx, Ty) < ¢ for a given € > 0.

Then T has a unique fized point w € X. Also, T is discontinuous at w if and
only if ii_l}rllle (x,u) #£0.

Proof. By the similar arguments used in the proof of Theorem 1, the proof
can be easily obtained. O

3 An application to the fixed-circle problem

In this section, we investigate new solutions to the fixed-circle problem raised
by Ozgiir and Tag in [19] related to the geometric properties of the set Fix(T)
for a self mapping T on an S-metric space (X,S). Some fixed-circle or fixed-
disc results, as the direct solutions of this problem, have been studied using
various methods on a metric space or some generalized metric spaces (see
[15, 16, 20, 21, 22, 23, 26, 27, 30, 31, 32]).

Now we recall the notions of a circle and a disc on an S-metric space as
follows:

CS =xeX:8(xx,%x) =1}

X0,T
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and
DS ={xeX:8(x,x,%x0) <1},

X0,T

where 1 € [0, 00) [20, 29].

If Tx = x for all x € C>S<0,r (resp. x € D
disc D3 ) is called as the fixed circle (resp. fixed disc) of T (for more details
see [15, 20]).

We begin with the following definition.

S ) then the circle C3 . (resp. the

Xo,‘r) X0,T

Definition 2 A self-mapping T is called an S-Zamfirescu type xo-mapping if
there exist xo € X and a,b € [0,1) such that

G.S(X, Xy XO))
<
S(Tx, Tx,x) > 0 = S(Tx, Tx,x) < max{ % (S (Txo, Txo, x) + S (T, T, xo)] } ,

for all x € X.
We define the following number:
p :=inf {S(Tx, Tx, x) : Tx # x,x € X}. (12)

Now we prove that the set Fix(T) contains a circle (resp. a disc) by means of
the number p.

Theorem 4 If T is an S-Zamfirescu type xo-mapping with xo € X and the
condition
S(Tx, Tx, x0) < p

holds for each x € CS__ then C,S(pr is a fized circle of T, that is, C,S(O’p C Fix(T).

X0,P

Proof. At first, we show that x; is a fixed point of T. On the contrary, let Txy #
Xo. Then we have S(Txg, Txg, Xo) > 0. By the definition of an S-Zamfirescu type
xo-mapping and the condition (S1), we obtain

b
S(Txo, Txyx0) < max {GS(XmXo,Xo)) 5 [S(Txo, Txo, x0) + S(Txo, TXo,Xo)]}
- bS(TX0>TXO)X0))

a contradiction because of b € [0,1). This shows that Txy = xo.

We have two cases:

Case 1: If p =0, then we get C,S(O)p = {xo} and clearly this is a fixed circle
of T.
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Case 2: Let p > 0 and x € C3
have

be any point such that Tx # x. Then we

X0,P
S(Tx, Tx,x) >0
and using the hypothesis we obtain,

S(Tx, Tx,x) < max{aS(x,x,xo)

b
) z [S(TXO) TxO) X) =+ S(TX) TX) XO)]}

< max{ap, bp} < p,

which is a contradiction with the definition of p. Hence it should be Tx = x

whence C3 o, 15 a fixed circle of T. O

Corollary 3 If T is an S-Zamfirescu type xo-mapping with xo € X and the
condition
S(Tx, Tx, x0) < p

holds for each x € DS then D3__ is a fized disc of T, that is, DS C Fix(T).

X0,P X0,p X0,p
Now we give an illustrative example to show the effectiveness of our results.

Example 3 Let X =R and (X, S) be the S-metric space defined as in Example
1. Let us define the self-mapping T : X — X as

_ x ; x€[-3,3]
TX_{X—H ; xgé -3,3] 7

for allx € R. Then T is an S-Zamfirescu type xo-mapping with xo = 0,a = %
and b =0. Indeed, we get

S(Tx, Tx,x) =2[Tx — x| =2 >0,
for all x € (—o0,—3) U (3, 00). So we obtain

S(Tx, Tx,x) = 2< max{as (x,x,O),P

3 [S(0,0,x)+8(x+1,x+1,0)]}

1
Also we have
p=inf{S(Tx, Tx,x) : Tx #x,x € X} =2

and
S(Tx, Tx,0) = S(x,x,0) < 2,

for all x € Cg)z = {x:8(x,x,0) =2} = {x:2x| =2} = {x: x| =1}. Conse-
quently, T fizes the circle ngz and the disc Dg‘z
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