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Abstract. These days, it is widely known that smoking causes numerous

diseases, as well as resulting in many avoidable losses of life globally, and
therefore encumbers the society with enormous unnecessary burdens. The aim

of this study is to examine in-depth a smoking model that is mainly influenced

by determination and educational actions via CF and AB derivatives. For
both fractional order models, the fixed point method is used, which allows

us to follow the proof of existence and the results of uniqueness. The effective

properties of the above-mentioned fractional models are theoretically exhibited,
their results are confirmed by numerical graphs by various fractional orders.

1. Introduction. Today, it is widely recognized that smoking does not bring about
any benefits; on the contrary, each and every segment of the society is now aware
of the numerous hazards that smoking engenders. For instance, your skin becomes
deprived of moisture and elasticity, you become more likely to suffer from hyper-
tension, your DNA becomes prone to detrimental effects, your immune system is
rendered weaker, and you come face to face with worrisome issues involving econ-
omy, pregnancy, overall health, risk of untimely death, and so on. Moreover, many
types of cancer, such as lung, mouth, and throat cancers take their source from
the hazardous but often-unseen impact of smoking on our health according to re-
searchers. In brief, the hazards originating from the smoking habit result in serious
complications in both individual and social spheres. It has been formidably antic-
ipated that no fewer than 7 million people lose their lives due to smoking-related
problems every year worldwide. Taking all of these unfavorable facts into consid-
eration, scientists from a multitude of fields seek to vanquish this dangerous habit
so that they may expect to extend the health span of human beings. And many
of those researchers concentrate on mathematical models to demonstrate the most
fitting representation the dynamics of smoking, and thus assist in diminishing the
number of smokers or prevent many others from starting smoking (for more details
one can see [20], [14], [22], [13] and references therein).

Researchers from various disciplines including physics, neural networks, biology
and health sciences have taken extensive interest in the fractional calculus with the
features of memorial construction and hereditary properties [24], [29], [30], [11], [12],
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[16], [17], [36], [31], [28], [38], [23]. This is why there are different fractional deriva-
tives; Riemann-Liouville (RL) and Caputo operators are the most conventional
examples in established usage. Although the said derivatives show more accurate
in characterizing real phenomena compared to the integer order derivatives, their
kernel functions generate singularities which result in a multitude of computational
deficiencies. A new derivative that is non-singular and incorporates exponential law
kernel has latterly been brought into operation by Caputo and Fabrizio [15], and
aptly titled after them as Caputo-Fabrizio (CF) derivative. In this direction, Atan-
gana and Baleanu [6] have presented a novel version of non-singular derivative with
Mittag-Leffler kernel named as Atangana-Baleanu (AB) derivative. It is evident
from the researches which has been carried out pursuant to these advancements in
the recent years that these fractional derivatives provide the scientists a good chance
to describe diverse problems. For example, benefiting from the Caputo-Fabrizio de-
rivative, Atangana et al. [8] examined Baggs and Freedman model, Ullah et al.
[41] investigated the dynamics of tuberculosis infection, Singh et al. [35] studied
existence and uniqueness theorems about giving up smoking dynamics. Further-
more, by concentrating AB derivative, Atangana and Koca [7] analyzed a nonlinear
chaotic system, Gomez-Aguilar [19] examined a nonlinear alcoholism model under
the influence of Twitter, Singh et al. [33] gave a new analysis of fractional fish farm
model, Veeresha et al. [42] invesitgated fractional extended Fisher–Kolmogorov
equation. Other remarkable studies can be found in [26], [34], [1], [5], [25], [40],
[10], [18], [44], [3], [4], [2], [21], [32], [39].

Therefore, inspired by the applicability of non-singular derivatives, we aim to
further investigate a smoking model in the view of fractional concept. The rest of
the paper is constructed as follows: We present some preliminaries related to CF
and AB derivatives in the next section. The mathematical formulation of smoking
model with determination and education is presented in Section 3. In Section 4, by
means of fixed point theory, it is proved existence and uniqueness of solutions for
our fractional smoking models equipped with exponential kernel and Mittag Leffler
kernel sense. In Section 5, some numerical results are put into place and these
outcomes shortly commented. At the end of study, we see the conclusions.

2. Some preliminaries. In this part, we give basic definitions related to the
Caputo-Fabrizio and Atangana-Baleanu fractional derivatives.

Definition 2.1. [15] Let a < b, g ∈ H1 (a, b) and σ ∈ [0, 1] , the Caputo-Fabrizio
derivative is given by

Dσ
t [g (t)] =

M (σ)

1− σ

t∫
a

g′ (x) exp

[
−σ t− x

1− σ

]
dx, (1)

where M (σ) is a normalization function satisfying M (0) = M (1) = 1. If g /∈
H1 (a, b), this derivative can be rearranged as below:

Dσ
t [g (t)] =

σM (σ)

1− σ

t∫
a

(g (t)− g (x)) exp

[
−σ t− x

1− σ

]
dx. (2)
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Remark 1. If η = 1−σ
σ ∈ [0,∞), σ = 1

1+η ∈ [0, 1], then Eq. (2) is of the form:

Dσ
t [g (t)] =

N (η)

η

t∫
a

g′ (x) exp

[
− t− x

η

]
dx,

with N (0) = N (∞) = 1. Additionally,

lim
η→ 0

1

η
exp

[
− t− x

η

]
= δ (x− t) .

The related integral of the new derivative was proposed by Nieto and Losada [2],
[27].

Definition 2.2. Let 0 < σ < 1 and g be a function. The fractional integral of
order σ is defined by [2], [27]:

Iσt [g (t)] =
2 (1− σ)

(2− σ)M (σ)
g (t) +

2σ

(2− σ)M (σ)

t∫
0

g (s) ds, t ≥ 0. (3)

Moreover, the below result holds

2 (1− σ)

(2− σ)M (σ)
+

2σ

(2− σ)M (σ)
= 1,

then M (σ) = 2
2−σ for 0 < σ < 1.

Using the above results, another form of the new Caputo derivative of order
0 < σ < 1 given as [27]:

Dσ
t [g (t)] =

1

1− σ

t∫
a

g′ (x) exp

[
−σ t− x

1− σ

]
dx. (4)

Definition 2.3. Let σ ∈ [0, 1], a < b and g ∈ H1 (a, b) be a function. The
Atangana-Baleanu derivative in Caputo sense of order σ of g is defined as [6]:

ABC
a Dσ

t [g (t)] =
F (σ)

1− σ

t∫
a

g′ (x)Eσ

[
−σ (t− x)

σ

1− σ

]
dx

where F (η) is a normalization function such as F (σ) = 1− σ + σ
Γ(σ) with F (0) =

F (1) = 1.

Definition 2.4. Let σ ∈ [0, 1], a < b and g ∈ H1 (a, b) be a function. The
Atangana-Baleanu derivative in Riemann-Liouville sense of order σ of g is rep-
resented as [6]:

ABR
a Dσ

t [g (t)] =
F (σ)

1− σ
d

dt

t∫
a

g (x)Eσ

[
−σ (t− x)

σ

1− σ

]
dx.

Definition 2.5. The fractional integral relative to the fractional derivative is given
as [6]:

AB
a Iσt [g (t)] =

1− σ
F (σ)

g (t) +
σ

F (σ) Γ (σ)

t∫
a

g (λ) (t− λ)
σ−1

dλ.
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3. Mathematical model formulation. In this part, we deal with the model
which is able to describe smoking model with determination and education in the
following expression [43]: In their study, it is presumed that the aggregate num-
ber of the collection under consideration, which is denoted by N , remains fixed
for the duration of modeling. The overall population is separated into three sub-
categories, where P signifies potential smokers; S denotes smokers and R signifies
removed. The class inclined to consume tobacco products constitutes the poten-
tial smokers category, while the class that regularly consume cigarettes forms the
smokers category. The class comprising both quitters and the people who have
enough knowledge and education to stay away from the smoking habit for a lifetime
is named removed, and denoted by R. Thus N = P + S + Q. The other model
parameters are: Both the ratio of influx into category P and each category’s ratio
of death due to natural causes are indicated by a1. The transference ratio of the
smoking behavior is signified by a2, while the ratio of departure from the smokers
category is designated by a3. The determination ratio is denoted by a4, and the
ratio involving potential smokers who shift to category R because of education a5.
The so-called mathematical model given in [43]:

dP (t)

dt
= a1N − a2

PS

N
+ a3 (1− a4)S − a1P − a5P,

dS (t)

dt
= a2

PS

N
− a1S − a3S,

dR (t)

dt
= a3a4S − a1R+ a5P. (5)

with the initial conditions P (0) ≥ 0, S (0) ≥ 0, R (0) ≥ 0. Because of N is constant,
if we use the transformation p = P

N , s = S
N , r = R

N in the Eq. (5), we find

dp (t)

dt
= a1 − a2ps+ a3 (1− a4) s− a1p− a5p

ds (t)

dt
= a2ps− a1s− a3s

dr (t)

dt
= a3a4s− a1r + a5p. (6)

as the above same initial conditions. To extend and promote this model, we redefine
the model (6) by substituting the integer order time derivative by the fractional time
derivative:

CF
0 Dσ

t (p (t)) = a1 − a2p (t) s (t) + a3 (1− a4) s (t)− a1p (t)− a5p (t) ,
CF
0 Dσ

t (s (t)) = a2p (t) s (t)− a1s (t)− a3s (t) ,
CF
0 Dσ

t (r (t)) = a3a4s (t)− a1r (t) + a5p (t) . (7)

Similarly, the fractional model under Atangana-Baleanu derivative

ABC
0 Dσ

t (p (t)) = a1 − a2p (t) s (t) + a3 (1− a4) s (t)− a1p (t)− a5p (t) ,
ABC
0 Dσ

t (s (t)) = a2p (t) s (t)− a1s (t)− a3s (t) ,
ABC
0 Dσ

t (r (t)) = a3a4s (t)− a1r (t) + a5p (t) . (8)

The related initial conditions to the above models are

p (0) ≥ 0, s (0) ≥ 0, r (0) ≥ 0.
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4. Existence and uniqueness analysis. In the subfield of differential calculus,
it is an arduous matter to achieve the solution of nonlinear equations. Since we
are also dealing with a nonlinear fractional order model, it might not be possible
to reach an exact solution for this kind of systems. Hence we dedicate this sec-
tion to elaborate on the existence and uniqueness of the solution concerning the
aforementioned models (7) and (8) in view of the fixed point theory.

Let P = C (N) × C (N) × C (N) and C (N) be a Banach space of continuous
R→ R valued functions on the interval N having the norm:

‖(p, s, r)‖ = ‖p‖+ ‖s‖+ ‖r‖ ,

where ‖p‖ = sup {|p (t)| : t ∈ N}, ‖s‖ = sup {|s (t)| : t ∈ N}, ‖r‖ = sup {|r (t)| : t ∈ N}.

4.1. Existence and uniqueness of solutions for smoking model with
Caputo-Fabrizio derivative. Applying fractional integral in [27] to the Eq. (7),
we have

p (t)− p (0) = CF
0 Iσt [a1 − a2p (t) s (t) + a3 (1− a4) s (t)− a1p (t)− a5p (t)] ,

s (t)− s (0) = CF
0 Iσt [a2p (t) s (t)− a1s (t)− a3s (t)] ,

r (t)− r (0) = CF
0 Iσt [a3a4s (t)− a1r (t) + a5p (t)] . (9)

Utilizing the notation introduced by Losada and Nieto [27], we find

p (t)− p (0) =
2 (1− σ)

(2− σ)M (σ)
[a1 − a2p (t) s (t) + a3 (1− a4) s (t)− a1p (t)− a5p (t)]

+
2σ

(2− σ)M (σ)

t∫
0

[a1 − a2p (λ) s (λ) + a3 (1− a4) s (λ)− a1p (λ)− a5p (λ)] dλ

s (t)− s (0) =
2 (1− σ)

(2− σ)M (σ)
[a2p (t) s (t)− a1s (t)− a3s (t)]

+
2σ

(2− σ)M (σ)

t∫
0

[a2p (λ) s (λ)− a1s (λ)− a3s (λ)] dλ,

r (t)− r (0) =
2 (1− σ)

(2− σ)M (σ)
[a3a4s (t)− a1r (t) + a5p (t)]

+
2σ

(2− σ)M (σ)

t∫
0

[a3a4s (λ)− a1r (λ) + a5p (λ)] dλ. (10)

For the sake of clearness, we identify the kernels as below:

G1 (t, p) = a1 − a2p (t) s (t) + a3 (1− a4) s (t)− a1p (t)− a5p (t) ,

G2 (t, s) = a2p (t) s (t)− a1s (t)− a3s (t) ,

G3 (t, r) = a3a4s (t)− a1r (t) + a5p (t) . (11)

Theorem 4.1. If the below inequality holds

0 ≤ a2ε2 + a1 + a5 < 1

then the kernel G1 satisfies Lipschitz condition and contraction.
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Proof. Let p and p1 be two functions, and then we have

‖G1 (t, p)−G1 (t, p1)‖ = ‖−a2p (t) s (t)− a1p (t)− a5p (t) + a2p1 (t) s (t)

+a1p1 (t) + a5p1 (t)‖
≤ [a2 ‖s (t)‖+ a1 + a5] ‖p (t)− p1 (t)‖ .

where ‖p (t)‖ ≤ ε1, ‖s (t)‖ ≤ ε2, ‖r (t)‖ ≤ ε3 are bounded functions and taking
ψ1 = a2ε2 + a1 + a5, we have

‖G1 (t, p)−G1 (t, p1)‖ ≤ ψ1 ‖p (t)− p1 (t)‖ . (12)

Hence, the Lipschitz condition is proved for the kernel G1 and 0 ≤ a2ε2+a1+a5 < 1
gives G1 is a contraction.

Similarly, it can be shown that the Lipschitz condition and contraction performed
by the kernels G2 and G3.

By using the aforementioned kernels, Eq. (10) becomes

p (t) = p (0) +
2 (1− σ)

(2− σ)M (σ)
G1 (t, p) +

2σ

(2− σ)M (σ)

t∫
0

G1 (λ, p) dλ,

s (t) = s (0) +
2 (1− σ)

(2− σ)M (σ)
G2 (t, s) +

2σ

(2− σ)M (σ)

t∫
0

G2 (λ, s) dλ,

r (t) = r (0) +
2 (1− σ)

(2− σ)M (σ)
G3 (t, r) +

2σ

(2− σ)M (σ)

t∫
0

G3 (λ, r) dλ. (13)

We focus on the below recursive formula:

pn (t) =
2 (1− σ)

(2− σ)M (σ)
G1 (t, pn−1) +

2σ

(2− σ)M (σ)

t∫
0

G1 (λ, pn−1) dλ,

sn (t) =
2 (1− σ)

(2− σ)M (σ)
G2 (t, sn−1) +

2σ

(2− σ)M (σ)

t∫
0

G2 (λ, sn−1) dλ,

rn (t) =
2 (1− σ)

(2− σ)M (σ)
G3 (t, rn−1) +

2σ

(2− σ)M (σ)

t∫
0

G3 (λ, rn−1) dλ. (14)

with

p0 (t) = p (0) , s0 (t) = s (0) , r0 (t) = r (0) (15)

as the initial conditions.
The difference between successive terms is of the form:

φ∗1n (t) = pn (t)− pn−1 (t) =
2 (1− σ)

(2− σ)M (σ)
[G1 (t, pn−1)−G1 (t, pn−2)]

+
2σ

(2− σ)M (σ)

t∫
0

[G1 (λ, pn−1)−G1 (λ, pn−2)] dλ,
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φ∗2n (t) = sn (t)− sn−1 (t) =
2 (1− σ)

(2− σ)M (σ)
[G2 (t, sn−1)−G2 (t, sn−2)]

+
2σ

(2− σ)M (σ)

t∫
0

[G2 (λ, sn−1)−G2 (λ, sn−2)] dλ,

φ∗3n (t) = rn (t)− rn−1 (t) =
2 (1− σ)

(2− σ)M (σ)
[G3 (t, rn−1)−G3 (t, rn−2)]

+
2σ

(2− σ)M (σ)

t∫
0

[G3 (λ, rn−1)−G3 (λ, rn−2)] dλ. (16)

In the line with the above calculations, it is evident that

pn (t) =

n∑
k=0

φ∗1k (t) ,

sn (t) =

n∑
k=0

φ∗2k (t) ,

rn (t) =

n∑
k=0

φ∗3k (t) . (17)

Performing the norm to both sides of the Eq. (16) and using triangular identity,
we assess

‖φ∗1n (t)‖ = ‖pn (t)− pn−1 (t)‖

≤
∥∥∥∥ 2 (1− σ)

(2− σ)M (σ)
[G1 (t, pn−1)−G1 (t, pn−2)]

∥∥∥∥
+

2σ

(2− σ)M (σ)

t∫
0

‖[G1 (λ, pn−1)−G1 (λ, pn−2)] dλ‖ (18)

Since the kernel G1 carries out the Lipschitz condition, we find

‖φ∗1n (t)‖ = ‖pn (t)− pn−1 (t)‖

≤ 2 (1− σ)

(2− σ)M (σ)
ψ1 ‖pn−1 − pn−2‖

+
2σ

(2− σ)M (σ)
ψ1

t∫
0

‖pn−1 − pn−2‖ dλ (19)

and then

‖φ∗1n (t)‖ ≤ 2 (1− σ)

(2− σ)M (σ)
ψ1

∥∥∥φ∗1(n−1) (t)
∥∥∥

+
2σ

(2− σ)M (σ)
ψ1

t∫
0

∥∥∥φ∗1(n−1) (λ)
∥∥∥ dλ. (20)
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Continuing the same attitude, we gain

‖φ∗2n (t)‖ ≤ 2 (1− σ)

(2− σ)M (σ)
ψ2

∥∥∥φ∗2(n−1) (t)
∥∥∥

+
2σ

(2− σ)M (σ)
ψ2

t∫
0

∥∥∥φ∗2(n−1) (λ)
∥∥∥ dλ,

‖φ∗3n (t)‖ ≤ 2 (1− σ)

(2− σ)M (σ)
ψ3

∥∥∥φ∗3(n−1) (t)
∥∥∥

+
2σ

(2− σ)M (σ)
ψ3

t∫
0

∥∥∥φ∗3(n−1) (λ)
∥∥∥ dλ. (21)

Considering the achieved findings, we state the theorem as below:

Theorem 4.2. If we can find t0 such that

2 (1− σ)

(2− σ)M (σ)
ψi +

2σ

(2− σ)M (σ)
ψit0 < 1 for i = 1, 2, 3.

then the fractional model (7) has a solution.

Proof. Benefiting from the Eq. (20) and Eq. (21), then taking into consideration the
fact that the functions p (t), s (t), r (t) are bounded and the kernels fulfil Lipschitz
condition, we obtain the succeeding relations as below:

‖φ∗1n (t)‖ ≤ ‖pn (0)‖
[

2 (1− σ)

(2− σ)M (σ)
ψ1 +

2σ

(2− σ)M (σ)
ψ1t

]n
,

‖φ∗2n (t)‖ ≤ ‖sn (0)‖
[

2 (1− σ)

(2− σ)M (σ)
ψ2 +

2σ

(2− σ)M (σ)
ψ2t

]n
,

‖φ∗3n (t)‖ ≤ ‖rn (0)‖
[

2 (1− σ)

(2− σ)M (σ)
ψ3 +

2σ

(2− σ)M (σ)
ψ3t

]n
. (22)

So, these solutions exist and are continuous. In order to show that the above
functions are solution of the Eq. (7), we suppose

p (t)− p (0) = pn (t)− ζ1n (t) ,

s (t)− s (0) = sn (t)− ζ2n (t) ,

r (t)− r (0) = rn (t)− ζ3n (t) . (23)

Therefore, we find

‖ζ1n‖ =

∥∥∥∥ 2 (1− σ)

(2− σ)M (σ)
[G1 (t, p)−G1 (t, pn−1)]

+
2σ

(2− σ)M (σ)

t∫
0

[G1 (λ, p)−G1 (λ, pn−1)] dλ

∥∥∥∥∥∥
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≤ 2 (1− σ)

(2− σ)M (σ)
‖G1 (t, p)−G1 (t, pn−1)‖

+
2σ

(2− σ)M (σ)

t∫
0

‖G1 (λ, p)−G1 (λ, pn−1) dλ‖

≤ 2 (1− σ)

(2− σ)M (σ)
ψ1 ‖p− pn−1‖+

2σ

(2− σ)M (σ)
ψ1t ‖p− pn−1‖ . (24)

By repeating this process, it gives at t0

‖ζ1n (t)‖ ≤
(

2 (1− σ)

(2− σ)M (σ)
+

2σ

(2− σ)M (σ)
t0

)n+1

ψ
n+1

1 a. (25)

As n approaches to infinity, taking the limit Eq. (25), we have

‖ζ1n (t)‖ → 0.

Similarly, we have

‖ζ2n (t)‖ → 0 and ‖ζ3n (t)‖ → 0.

It is a critical matter to achieve the uniqueness for the solutions of the model
(7). Let p1 (t), s1 (t) and r1 (t) be another solutions then

p (t)− p1 (t) =
2 (1− σ)

(2− σ)M (σ)
[G1 (t, p)−G1 (t, p1)]

+
2σ

(2− σ)M (σ)

t∫
0

[G1 (λ, p)−G1 (λ, p1)] dλ. (26)

Regarding the fact that the kernel provides Lipschitz condition and taking the
norm Eq. (26), we have

‖p (t)− p1 (t)‖ ≤ 2 (1− σ)

(2− σ)M (σ)
ψ1 ‖p (t)− p1 (t)‖

+
2σ

(2− σ)M (σ)
ψ1t ‖p (t)− p1 (t)‖ (27)

It yields

‖p (t)− p1 (t)‖
(

1− 2 (1− σ)

(2− σ)M (σ)
ψ1 −

2σ

(2− σ)M (σ)
ψ1t

)
≤ 0. (28)

If the inequality
(

1− 2(1−σ)
(2−σ)M(σ)ψ1 − 2σ

(2−σ)M(σ)ψ1t
)

≥ 0 exists, then

‖p (t)− p1 (t)‖ = 0. So we obtain

p (t) = p1 (t) .

In an analogous way, we have

s (t) = s1 (t) and r (t) = r1 (t) , (29)

which completes the uniqueness of the solutions for the model (7).
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4.2. Existence and uniqueness of solutions for smoking model with
Atangana-Baleanu derivative. Implementing the fractional integral to both sides
of the Eq. (8), the model can be written as follows:

p (t)− p (0) =
1− σ
F (σ)

[a1 − a2p (t) s (t) + a3 (1− a4) s (t)− a1p (t)− a5p (t)]

+
σ

F (σ) Γ (σ)

t∫
0

(t− λ)σ−1 [a1 − a2p (λ) s (λ) + a3 (1− a4) s (λ)− a1p (λ)− a5p (λ)] dλ,

s (t)− s (0) =
1− σ
F (σ)

[a2p (t) s (t)− a1s (t)− a3s (t)]

+
σ

F (σ) Γ (σ)

t∫
0

(t− λ)σ−1 [a2p (λ) s (λ)− a1s (λ)− a3s (λ)] dλ,

r (t)− r (0) =
1− σ
F (σ)

[a3a4s (t)− a1r (t) + a5p (t)]

+
σ

F (σ) Γ (σ)

t∫
0

(t− λ)
σ−1

[a3a4s (λ)− a1r (λ) + a5p (λ)] dλ. (30)

For simplification, we assign the below kernels:

G1 (t, p) = a1 − a2p (t) s (t) + a3 (1− a4) s (t)− a1p (t)− a5p (t) ,

G2 (t, s) = a2p (t) s (t)− a1s (t)− a3s (t) ,

G3 (t, r) = a3a4s (t)− a1r (t) + a5p (t) . (31)

Theorem 4.3. If the following inequality holds

0 ≤ a2ε2 + a1 + a5 < 1

then the kernel G1 satisfies Lipschitz condition and contraction.

Proof. Let p and p1 be two functions, and then we have∥∥G1 (t, p)−G1 (t, p1)
∥∥ ≤ [a2 ‖s (t)‖+ a1 + a5] ‖p (t)− p1 (t)‖ ,

where ‖p (t)‖ ≤ ε1, ‖s (t)‖ ≤ ε2, ‖r (t)‖ ≤ ε3 are bounded functions and taking

ψ̃1 = a2ε2 + a1 + a5, we have∥∥G1 (t, p)−G1 (t, p1)
∥∥ ≤ ψ̃1 ‖p (t)− p1 (t)‖ .

So, the kernel G1 satisfies the Lipschitz condition and 0 ≤ a2ε2 + a1 + a5 < 1 gives
G1 is contraction.

Similarly, it can be shown that G2 and G3 fulfil the Lipschitz condition and
contraction.

Regarding the above kernels, Eq. (30) becomes

p (t) = p (0) +
1− σ
F (σ)

G1 (t, p) +
σ

F (σ) Γ (σ)

t∫
0

(t− λ)
σ−1

G1 (λ, p) dλ,

s (t) = s (0) +
1− σ
F (σ)

G2 (t, s) +
σ

F (σ) Γ (σ)

t∫
0

(t− λ)
σ−1

G2 (λ, s) dλ,
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r (t) = r (0) +
1− σ
F (σ)

G3 (t, r) +
σ

F (σ) Γ (σ)

t∫
0

(t− λ)
σ−1

G3 (λ, r) dλ. (32)

Here, we give the below recursive formula:

pn (t) =
1− σ
F (σ)

G1 (t, pn−1) +
σ

F (σ) Γ (σ)

t∫
0

(t− λ)
σ−1

G1 (λ, pn−1) dλ,

sn (t) =
1− σ
F (σ)

G2 (t, sn−1) +
σ

F (σ) Γ (σ)

t∫
0

(t− λ)
σ−1

G2 (λ, sn−1) dλ,

rn (t) =
1− σ
F (σ)

G3 (t, rn−1) +
σ

F (σ) Γ (σ)

t∫
0

(t− λ)
σ−1

G3 (λ, rn−1) dλ. (33)

with

p0 (t) = p (0) , s0 (t) = s (0) , r0 (t) = r (0)

as the initial conditions. The difference between the successive terms is of the
following expression:

φ
∗
1n (t) = pn (t)− pn−1 (t) =

1− σ
F (σ)

[
G1 (t, pn−1)−G1 (t, pn−2)

]
+

σ

F (σ) Γ (σ)

t∫
0

(t− λ)
σ−1 [

G1 (λ, pn−1)−G1 (λ, pn−2)
]
dλ,

φ
∗
2n (t) = sn (t)− sn−1 (t) =

1− σ
F (σ)

[
G2 (t, sn−1)−G2 (t, sn−2)

]
+

σ

F (σ) Γ (σ)

t∫
0

(t− λ)
σ−1 [

G2 (λ, sn−1)−G2 (λ, sn−2)
]
dλ,

φ
∗
3n (t) = rn (t)− rn−1 (t) =

1− σ
F (σ)

[
G3 (t, rn−1)−G3 (t, rn−2)

]
+

σ

F (σ) Γ (σ)

t∫
0

(t− λ)
σ−1 [

G3 (λ, rn−1)−G3 (λ, rn−2)
]
dλ. (34)

It is evident that

pn (t) =

n∑
k=0

φ
∗
1k (t) ,

sn (t) =

n∑
k=0

φ
∗
2k (t) ,

rn (t) =

n∑
k=0

φ
∗
3k (t) . (35)
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Taking the norm to both sides of the Eq. (34) and using the triangular inequality∥∥∥φ∗1n (t)
∥∥∥ = ‖pn (t)− pn−1 (t)‖

≤ 1− σ
F (σ)

∥∥G1 (t, pn−1)−G1 (t, pn−2)
∥∥

+
σ

F (σ) Γ (σ)

∥∥∥∥∥∥
t∫
0

(t− λ)
σ−1 [

G1 (λ, pn−1)−G1 (λ, pn−2)
]
dλ

∥∥∥∥∥∥(36)

Since the kernel G1 satisfies Lipschitz condition, we get∥∥∥φ∗1n (t)
∥∥∥ = ‖pn (t)− pn−1 (t)‖

≤ 1− σ
F (σ)

ψ̃1 ‖pn−1 − pn−2‖

+
σ

F (σ) Γ (σ)
ψ̃1

t∫
0

(t− λ)
σ−1 ‖pn−1 − pn−2‖ dλ (37)

and ∥∥∥φ∗1n (t)
∥∥∥ ≤ 1− σ

F (σ)
ψ̃1

∥∥∥φ∗1(n−1) (t)
∥∥∥

+
σ

F (σ) Γ (σ)
ψ̃1

t∫
0

(t− λ)
σ−1

∥∥∥φ∗1(n−1) (λ)
∥∥∥ dλ. (38)

By the similar way, we gain∥∥∥φ∗2n (t)
∥∥∥ ≤ 1− σ

F (σ)
ψ̃2

∥∥∥φ∗2(n−1) (t)
∥∥∥

+
σ

F (σ) Γ (σ)
ψ̃2

t∫
0

(t− λ)
σ−1

∥∥∥φ∗2(n−1) (λ)
∥∥∥ dλ,

∥∥∥φ∗3n (t)
∥∥∥ ≤ 1− σ

F (σ)
ψ̃3

∥∥∥φ∗3(n−1) (t)
∥∥∥

+
σ

F (σ) Γ (σ)
ψ̃3

t∫
0

(t− λ)
σ−1

∥∥∥φ∗3(n−1) (λ)
∥∥∥ dλ. (39)

Within the framework of the results in hand, we state a new theorem.

Theorem 4.4. If we can find t0 such that

1− σ
F (σ)

ψ̃i +
tσ0

F (σ) Γ (σ)
ψ̃i < 1 for i = 1, 2, 3

then the fractional model (8) has a solution.



EXISTENCE AND UNIQUENESS RESULTS FOR A SMOKING MODEL . . . 2583

Proof. Considering the functions p (t), s (t), r (t) are bounded and using the Eqs.
(38) and (39), we obtain the following relations:∥∥∥φ∗1n (t)

∥∥∥ ≤ ‖p (0)‖
[

1− σ
F (σ)

ψ̃1 +
tσ0

F (σ) Γ (σ)
ψ̃1

]n
,∥∥∥φ∗2n (t)

∥∥∥ ≤ ‖s (0)‖
[

1− σ
F (σ)

ψ̃2 +
tσ0

F (σ) Γ (σ)
ψ̃2

]n
,∥∥∥φ∗3n (t)

∥∥∥ ≤ ‖r (0)‖
[

1− σ
F (σ)

ψ̃3 +
tσ0

F (σ) Γ (σ)
ψ̃3

]n
. (40)

Thus, the solutions exist and are continuous. In order to prove that the above
functions are solution of the model (8), suppose that

p (t)− p (0) = pn (t)− ζ1n (t) ,

s (t)− s (0) = sn (t)− ζ2n (t) ,

r (t)− r (0) = rn (t)− ζ3n (t) . (41)

Next, we obtain∥∥ζ1n

∥∥ =

∥∥∥∥1− σ
F (σ)

[
G1 (t, p)−G1 (t, pn−1)

]
+

σ

F (σ) Γ (σ)

t∫
0

(t− λ)
σ−1 [

G1 (λ, p)−G1 (λ, pn−1)
]
dλ

∥∥∥∥∥∥
≤ 1− σ

F (σ)

∥∥G1 (t, p)−G1 (t, pn−1)
∥∥

+
σ

F (σ) Γ (σ)

t∫
0

(t− λ)
σ−1 ∥∥G1 (λ, p)−G1 (λ, pn−1) dλ

∥∥
≤ 1− σ

F (σ)
ψ̃1 ‖p− pn−1‖+

tσ

F (σ) Γ (σ)
ψ̃1 ‖p− pn−1‖ . (42)

Continuing this process recursively, it gives at t0∥∥ζ1n (t)
∥∥ ≤ (1− σ

F (σ)
+

tσ0
F (σ) Γ (σ)

)n+1

ψ̃n+1
1 M. (43)

As n approaches to infinity, taking the limit to both sides of the Eq. (43), we have∥∥ζ1n (t)
∥∥→ 0.

Analogously, we get ∥∥ζ2n (t)
∥∥→ 0 and

∥∥ζ3n (t)
∥∥→ 0.

Now, we show the uniqueness for the solutions of the model (8), which is another
significant matter.

Let p1 (t), s1 (t) and r1 (t) be another solutions. Then, we obtain

p (t)− p1 (t) =
1− σ
F (σ)

[
G1 (t, p)−G1 (t, p1)

]
+

σ

F (σ) Γ (σ)

t∫
0

(t− λ)
σ−1 [

G1 (λ, p)−G1 (λ, p1)
]
dλ. (44)
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We know that the kernel carries out Lipschitz condition and implementing the norm
Eq. (44), we have

‖p (t)− p1 (t)‖ ≤ 1− σ
F (σ)

ψ̃1 ‖p (t)− p1 (t)‖

+
tσ

F (σ) Γ (σ)
ψ̃1 ‖p (t)− p1 (t)‖ . (45)

It gives

‖p (t)− p1 (t)‖
(

1− 1− σ
F (σ)

ψ̃1 −
tσ

F (σ) Γ (σ)
ψ̃1

)
≤ 0. (46)

If the inequality
(

1− 1−σ
F (σ) ψ̃1 − tσ

F (σ)Γ(σ) ψ̃1

)
≥ 0 exists, then ‖p (t)− p1 (t)‖ = 0.

So, we find

p (t) = p1 (t) .

Clearly, we can show .

s (t) = s1 (t) and r (t) = r1 (t) ,

which gives the uniqueness for the solutions of the model (8).

5. Numerical results. Smoking is a complex habit affected by a distinctive and
overlapping mixture of biologic, psychosocial, environmental, and educational ele-
ments. These elements can act as risk or defensive elements. Risk elements are
characterized by rises in frequency and density, although they raise the possibility
of starting smoking and continuous use. In contrast, defensive elements reduce the
possibility of starting smoking and lower the probability of switching experimental
to habitual use. Moreover, the possibility of smoking of educated and determined
people are lower, and if they make a decision for smoking they smoke less cigarettes
each day. Considering these facts, we set forth various numerical examples providing
evidence to our theoretical outcomes concerning the relevant models (7) and (8) by
employing the method which is shown in [9] and [37] seriatim. To this end, as given
in [43], it is presumed that the initial conditions would be p (0) = 0.6, s (0) = 0.3,
r (0) = 0.1, and the parameters a1 = 0.02, a2 = 0.4, a3 = 0.05, a4 = 0.2, a5 = 0.06
are selected. According to both CF and AB derivatives, the influence of education
is evident from Figs. 1-2, which demonstrate that not only the number of smokers
diminishes but also the removed population escalates with the widespread presence
of education. First, it is determined that a5 = 0.6, and after that, our conclusions
a4 = 0.2-0.6 are displayed without altering the rest of the parameters for observing
the manner in which the smokers populations of our fractional models are affected
by the change in determination and fractional order σ. In parallel, Figs. 3-4 show
us that the number of smokers decreases when determination rises. Moreover, from
Figs. 5-6, the effect of alteration in education and fractional order σ is represented
by fixing a4 as equal to 0.6. It is consequently perceived from both of these frac-
tional derivatives that the smokers population shows a decrease when education is
raised from a5 = 0.02 to 0.06.

6. Concluding remarks and future works. In recent times, Caputo with col-
laboration Fabrizio have introduced a new fractional order derivative with exponen-
tial kernel. Then, Atangana and Baleanu have defined AB derivative comprising
Mittag-Leffler kernel. In order to see further applications of these fractional deriva-
tives and better explore smoking matter, we present the fractional smoking model
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Figure 1. Numerical simulations for the model (7) at σ = 0.93,
σ = 0.75 and σ = 0.6, respectively.
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Figure 2. Numerical simulations for the model (8) at σ = 0.93,
σ = 0.75 and σ = 0.6 respectively.

with determination and education linked with the model [43] for the first time by
the concept of CF and AB derivatives. To the best of our knowledge, this model
has never been modelled with these derivatives in the literature. In the line with
fixed point method, we aim to give the conditions for the existence and uniqueness
solutions of the models (7) and (8). The numerical simulations for these fractional
models have been performed in order to understand the effectiveness of the frac-
tional order σ as well as determination parameter a4 and education parameter a5.
These simulations indicate that increase in determination and education leads to
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Figure 3. The effect of the parameters a4 on the smokers pop-
ulation s of the model (7) for the fractional order σ = 0.95 and
σ = 0.75, respectively.
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Figure 4. The effect of the parameters a4 on the smokers pop-
ulation s of the model (8) for the fractional order σ = 0.95 and
σ = 0.75, respectively.
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Figure 5. The effect of the parameters a5 on the smokers pop-
ulation s of the model (7) for the fractional order σ = 0.95 and
σ = 0.75, respectively.

decrease the smokers according to the different fractional orders. We anticipate that
the current study will be more useful in the description of smoking matter thinking
of determination and education. Maybe, in the future, the gained elements may
lead us to do more research on this subject. For example, the mathematical model
can be updated by considering various dynamical structures and can be examined
with different types of derivatives.
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Figure 6. The effect of the parameters a5 on the smokers pop-
ulation s of the model (8) for the fractional order σ = 0.95 and
σ = 0.75, respectively.
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