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We present a new type of activation functions for a complex-valued neural net-
work (CVNN). A proposed activation function is constructed such that it fixes
a given ellipse. We obtain an application to a complex-valued Hopfield neural
network (CVHNN) using a special form of the introduced complex functions
as an activation function. Considering the interesting geometric properties
of the plane curve ellipse such as focusing property, we emphasize that these
properties may have possible applications in various neural networks.
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1. Introduction

Recently, complex-valued neural networks
(CVNN) have been used in various fields such as
optoelectronics, imaging, signal processing, quan-
tum neural devices and artificial neural informa-
tion processing by many researchers (see [1–8]
for more details). For example, Gandal et al.
tried to evaluate and compare the relative per-
formance of CVNN using different error func-
tions [3]. Hirose studied what merits of CVNNs
arise from [4]. Jalab and Ibrahim introduced a
new type of complex-valued sigmoid function for
a fully multi-layered CVNN [5]. Zimmerman et
al. gave the differences between complex-valued
and real-valued neural networks and studied the
problems of CVNNs gradients computations by
combining the global and local optimization al-
gorithm [8]. Oladipo and Gbolagade investigated
modified logistic sigmoid as relates to analytic
univalent functions by means of subordination
properties in terms of starlikeness, convexity and
close-to-convexity [6]. In [7], it was proposed a

wind prediction system for the wind power gener-
ation using ensemble of multiple complex extreme
learning machines and used the elegant theory of
conformal mapping to find better transformations
in the complex domain for enhancing its predic-
tion capability.

In a CVNN, one of the main problems is select-
ing of nodes activation function (see [9]). In this
paper, we propose a new type of complex-valued
functions as an activation function for a complex-
valued Hopfield neural network (CVHNN). These
functions fix a given ellipse on the complex plane.
To construct an appropriate activation function,
a suitable ellipse can be chosen according to the
particular problem. The main advantage of this
choice is the increase in the number of fixed points
of a neural network with a geometrical meaning.

On the other hand, an ellipse has some interesting
properties such as the focusing property (see [10]).
We recall the focusing property of an ellipse. Let
E be the ellipse of the normal form with semi-
major axis a and semi-minor axis b:

E :
x2

a2
+

y2

b2
= 1. (1)
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The foci of the ellipse E of the form (1) are as
follows:

c1,2 = ∓
√

a2 − b2.

The radius of the ellipse E is r = 2a and so we
rewrite the equation of the ellipse of the form (1)
as

E : |z − c1|+ |z − c2| = r.

It is a well-known fact from geometry that a light
ray which leaves a focus c1 of an ellipse will be re-
flected to other focus c2 (see [10] and [11] for more
details). Using this interesting property and the
following proposition, Frantz proposed an appli-
cation to the open problem about trapped reflec-
tions described in [12]. It was seen that the light
ray gradually approaches a horizontal trajectory
and never leaves the container (see [10] for more
details).

Proposition 1. [10] Let a light ray leave a focus
of an ellipse with departure angle θ0 ∈ (0, π) and
let the successive departure angles of the ray be
θ1, θ2, . . .. Then θn ↑ π.

Therefore, it is possible to get some applications
of these kind properties of an ellipse in neural
networks. It is known that the plane curve el-
lipse has appeared in many applications in real life
problems (for example, see [13–21]). We expect
that our study will help to generate some new re-
searches and applications on complex-valued neu-
ral networks.

2. Complex Functions That Fix an

Ellipse

In this section, we investigate a new type of
complex-valued function which fixes an ellipse.
We begin with the following definition.

Definition 1. Let E be any ellipse on the complex
plane. If a complex function T satisfies the con-
dition T (z) = z for each complex number z ∈ E,

then the ellipse E is called the fixed ellipse of T .

Now we consider an ellipse E of the form (1). If
we take x = z+z

2
and y = z−z

2i
, then we can rewrite

the equation of this ellipse as

α
(

z2 + z2
)

+ βzz − 1 = 0, (2)

where α = 1
4a2

− 1
4b2

and β = 1
2a2

+ 1
2b2

.

Conversely, let us consider the following general
equation

α
(

z2 + z2
)

+ βzz + γ = 0. (3)

The equation (3) defines an ellipse if the following
conditions hold:

(1) α, β, γ ∈ R and β > 0,

(2) γ < 0, 2α+ β > 0 and 2α− β < 0.

Indeed, if we write z = x+ iy then we have

α
(

z2 + z2
)

+ βzz + γ = 0

⇒ α
[

(x+ iy)2 + (x− iy)2
]

+ β
(

x2 + y2
)

+ γ = 0

⇒ 2αx2 + βx2 − 2αy2 + βy2 + γ = 0
⇒ (2α+ β)x2 + (β − 2α)y2 + γ = 0

⇒ 2α+β
−γ

x2 + β−2α
−γ

y2 = 1

⇒ x2

−γ
2α+β

+ y2
γ

2α−β

= 1.

If we choose a and b such as

a =

√

−γ

2α+ β
and b =

√

γ

2α− β
, (4)

then the equation (3) defines the ellipse x2

a2
+ y2

b2
=

1.

Now we present a complex function which fixes an
ellipse of the form (3). For any complex number
z on the ellipse E, we get

α
(

z2 + z2
)

+ βzz + γ = 0

⇒ −αz2 − βzz = αz2 + γ

⇒ z (−αz − βz) = αz2 + γ

⇒
−γ − αz2

αz + βz
= z.

Hence we obtain the following theorem.

Theorem 1. Let E be any ellipse with the equa-
tion (3). If we define the transformation T1 as

T1(z) =
−γ − αz2

αz + βz
, (5)

then T1 fixes the ellipse E.

If we consider the following transformation T2 de-
fined as

T2(z) =
−γ − αz2 − αz2

βz
,

then it can be easily seen that T2 also fixes the el-
lipse E. Clearly, the transformations T1 ◦ T2 and
T2 ◦T1 fix also the ellipse E. The transformations
T1 and T2 are not always commutative, that is,
it can be T1 ◦ T2 6= T2 ◦ T1. For example, if we
consider γ = −1, α = 1, β = 3 and z = 1 then we
get

T1 ◦ T2(1) = −
2

3
and

T2 ◦ T1(1) = ∞.

Consequently, we can give the following corollary.

Corollary 1. For each ellipse E, there are at
least three transformations T such that

E = {z ∈ C : T (z) = z} .

Then E is exactly the set of fixed points of each
T .
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Figure 1. The ellipses Eβ for β ∈ {3, 4, 5, 6, 7}.

Taking α = 0, γ = −1, that is, a = b in the
equation (4), then we get the transformation

T3(z) =
1

βz

and E becomes the circle with the center z0 = 0
and the radius r = 1√

β
. Hence, the transforma-

tion T3 fixes the circle E and it is known that
the transformation T3 is an anti-conformal map
on the complex plane.

Now we consider the following two families of el-
lipses:

1) Let α = c be fixed in the equation (5). Then
we get β ∈ (2c,∞) when c ≥ 0 and β ∈ (−2c,∞)
when c < 0. For example, if we choose α = 1 in
the equation (5), we get β ∈ (2,∞). In this case,
the transformation T1 fixes the following ellipses
Eβ defined according to β:

Eβ :
x2

a2β
+

y2

b2β
= 1,

where aβ =
√

1
β+2

and bβ =
√

1
β−2

for each

β ∈ (2,∞). In the following figure, which has
been drawn by Mathematica [22], it is seen how
the ellipses Eβ change (see Figure 1). The ellipses
Eβ are indicated with different colors: E3 is the
red ellipse, E4 is the blue ellipse, E5 is the orange
ellipse, E6 is the green ellipse and E7 is the pink
ellipse.

2) Let β = c be fixed in the equation (5). Then
we get α ∈

(

− c
2
, c
2

)

. For example, if we consider

β = 1 in the equation (5), we get α ∈
(

−1
2
, 1
2

)

. In
this case, the transformation T1 fixes the following
ellipses Eα defined according to α:

Eα :
x2

c2α
+

y2

d2α
= 1,

where cα =
√

1
1+2α

and dα =
√

1
1−2α

for each

α ∈
(

−1
2
, 1
2

)

. It is seen from Figure 2 that how
the ellipses Eα change. The ellipses Eα are indi-
cated with different colors: E 1

4

is the red ellipse,

E 1

8

is the blue ellipse, E 1

10

is the orange ellipse,

E 1

12

is the green ellipse and E 1

14

is the pink ellipse.

3. An Application to Complex-Valued

Hopfield Neural Networks

Möbius transformations and some related (anti-
conformal) maps have been used as activation
functions in complex-valued neural networks us-
ing some different point of views such as fixed
points or fixed circles. It is known that Möbius
transformations are the conformal mappings of
the complex plane C. A Möbius transformation
is a rational function of the form

T (z) =
az + b

cz + d
, (6)

where a, b, c, d are complex numbers satisfying
ad − bc 6= 0. A point z on the complex plane
is said to be a fixed point of the Möbius transfor-
mation T (z) if T (z) = z. A Möbius transforma-
tion T (z) has at most two fixed points if it is not
identity transformation (see [23], [24] and [25] for
the basic properties of Möbius transformations).
In [26], it was identified the activation function
of a neuron and a single-pole all-pass digital fil-
ter section as Möbius transformations and then,
the existence of fixed points of a neural network
were guaranteed by the underlying Möbius trans-
formation. In [27], Özdemir et al. proposed new
types of activation functions which fix a circle for
a CVNN. The usage of these types of activation
functions leads us to guarantee the existence of
the fixed points of a CVHNN.
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Figure 2. The ellipses Eα for α ∈
{
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}

.

In this section, we consider the special form of the
transformation (5) defined as follows:

Sα(z) =
1− αz2

αz + (2α+ 1)z
, (7)

where α ≥ 0 (notice that γ = −1 and β is cho-
sen as 2α + 1). We propose this function as an
activation function for a CVHNN.

If we take α = 0 in the equation (7), then we
get the following activation function used in a
CVHNN in [27]:

S0(z) =
1

z
.

Therefore, the transformation Sα defined in (7)
which fixes an ellipse of the form (3) with γ = −1,
α ≥ 0, β = 2α+ 1 > 0 becomes a transformation
S0 which fixes the unit circle. The transformation
S0(z) =

1
z
was used to guarantee the existence of

the fixed points of a complex-valued Hopfield neu-
ral network (CVHNN). The transformation Sα(z)
is not injective while S0(z) is injective. Also this
transformation Sα(z) maps an ellipse of the form
(3) onto itself, outside of the ellipse to its inside
and inside of the ellipse to its outside. For exam-
ple, in the following Figure 3, we see the image of
the outside of the ellipse E : 5x2 + y2 = 1 under
the transformation defined as

S1(z) =
1− z2

z + 3z
.

At first, we give a brief summary about CVHNNs.
In [28], Hopfield presented a recurrent neural net-
work model referred to as the Hopfield neural
network (HNN). HNN has been generalized to
CVHNN and this generalized neural network has
been studied by many authors using different as-
pects. For example, Kobayashi defined the con-
cept of a hyperbolic neuron and constructed hy-
perbolic Hopfield neural network [18]. Also he

described the symmetric complex-valued Hopfield
neural networks using the complex-valued multi-
state neurons [29].

Following the studies given in [27], here we con-
sider the class of system in C in order to interest
CVHNN given by

.
z(t) = −H(z(t))(−Tz(t) + F (z(t))− U), (8)

where T ∈ C
n×n, U ∈ C

n are matrices,
z(t) ∈ C

n is state vector, H(z) : C
n →

C
n×n is a nonlinear function and F (z) =

(S1(z1), S2(z2), . . . , Sn(zn))
T : Cn → C

n is an ac-
tivation function with

Sk(zk) = Sα(zk) =
1− αzk

2

αzk + (2α+ 1)zk
, (9)

for some fixed α ≥ 0 and all k ∈ {1, 2, . . . , n}.
We note that the parameter α can be chosen ap-
propriately according to the studied problem. We
choose T ∈ R

n×n and U = 0 in the equation (8) to
obtain a relationship between the fixed points of
the activation function F (z) and the fixed points
of the network. Fixed points of the equation
.
z(t) = −H(z(t))(−Tz(t) + F (z(t))) can be ob-
tained by the equation −H(z)(−Tz + F (z)) = 0.
Suppose that H(z) is a nonsingular matrix then
the fixed points are F (z) = Tz, which correspond
to the fixed points of the activation function.

In our approach, we increase the number of fixed
points using the activation function defined in (9)
by a point of geometric view. We use the Lya-
punov stability to determine whether the fixed
points are stable or not (see [27], [30] and [31]
and for more details). The fixed points of the
CVHNN are isolated since they are on an ellipse.
Following the steps used in the proof of Theorem
2 on page 4701 in [27] and using the property
Sk(zk) = Sk(zk), it can be easily obtained that

.

E(z) = −Re [(Tz − F (z))(Tz − F (z))∗H(z)∗] ,



70 N. Özgür, N. Taş and J. F. Peters / IJOCTA, Vol.10, No.1, pp.66-72 (2020)

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

Figure 3. The geometric interpretation of the transformation S1(z) for the outside of the ellipse.

which is negative for positive definite matrix
Re [H(z)] and also equal to zero if and only if
.
z(t) = 0. So the following theorem gives the sta-
bility of the fixed points.

Theorem 2. Let the inner product be defined on
C
n as 〈z1, z2〉 = z∗2z1 where z1, z2 ∈ C

n and (.)∗

denotes the conjugate transpose. Assume that the
matrix T ∈ R

n×n is symmetric and the matrix
Re [H(z)] is positive definite. Then the function

E(z) = −
1

2
z∗Tz +Re





n
∑

k=1

zk
∫

0

Sk(s)ds





is a Lyapunov function of the CVHNN given by
the equation

.
z(t) = −H(z(t))(−Tz(t) + F (z(t))).

4. Remarks and Conclusion

We note that a general activation function for a
CVHNN can be obtained using the transforma-
tion T1 given in (5). The fixed points of this ac-
tivation function are on an ellipse with the form

(3). This allows us to choose the appropriate acti-
vation function according to the considered prob-
lem on a neural network. This activation function
can be helpful to construct several neural nets and
lead to interesting applications. Proposed activa-
tion functions can be considered as the general-
izations of ones used in [27].

Finally, we emphasize that the properties of the
ellipse, which is fixed by the chosen activation
function, are applicable to the neural networks.
Therefore, our results have possible applications
in real life problems.
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E. (2010). A novel method for lung segmenta-
tion on chest CT images: complex-valued ar-
tificial neural network with complex wavelet
transform. Turk. J. Elec. Eng. and Comp.
Sci., 18(4), 613-623.
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