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On Interpolating Sesqui-Harmonic Legendre Curves in
Sasakian Space Forms
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Abstract. We consider interpolating sesqui-harmonic Legendre curves in Sasakian
space forms. We find the necessary and sufficient conditions for Legendre curves
in Sasakian space forms to be interpolating sesqui-harmonic. Finally, we obtain an
example for an interpolating sesqui-harmonic Legendre curve in a Sasakian space form.
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1. Introduction

A map ¢ : (M,g) — (N,h) between Riemannian manifolds is called a harmonic
map and a btharmonic map, respectively if it is a critical point of the E(p) and Es(p)

E(p) = / o vy,

Ey(p) = / (@) dvy.

where () is a compact domain of M. The harmonic map equation is

T(p) = tr(Vdy) =0, (1.1)
and it is called the tension field of ¢ [5]. The Euler-Lagrange equation of Es(p) is
() = tr(VPV? = VE)(p) — tr(R™ (dp, 7(p))dyp) = 0, (1.2)

and it is called the bitension field of ¢ [11].

In [3], Branding defined and considered interpolating sesqui-harmonic maps between
Riemannian manifolds. The author introduced an action functional for maps between
Riemannian manifolds that interpolated between the actions for harmonic and bihar-
monic maps. The map ¢ is said to be interpolating sesqui-harmonic if it is a critical
point of Es, s,(p)

Essn(0) = 61 / \dol dvy + 6 / I ()| dv,. (1.3)

where Q is a compact domain of M and §;,d, € R [3]. The interpolating sesqui-
harmonic map equation is

To1.6: () = 02m2(p) — 17(p) = 0 (1.4)
for 81,92 € R [3]. An interpolating sesqui-harmonic map is biminimal if variations of

(L3) that are normal to the image (M) C N and o = 1, 6; > 0 [I3]. For some

recent study of biminimal immersions see [8], [13], [14] and [15].
1


http://arxiv.org/abs/1903.02753v1

Interpolating sesqui-harmonic curves in a 3-dimensional sphere were studied in [3].
In [6] and [7], Fetcu and Oniciuc considered biharmonic Legendre curves in Sasakian
space forms. In [4], Cho, Inoguchi and Lee studied affine biharmonic curves in 3-
dimensional pseudo-Hermitian geometry. In [I0], Inoguchi and Lee studied affine
biharmonic curves in 3-dimensional homogeneous geometries. In [16], the second au-
thor and Giiveng studied biharmonic Legendre curves in generalized Sasakian space
forms. In [9], Giiveng and the second author studied f-biharmonic Legendre curves
in Sasakian space forms. Motivated by the above studies, in the present paper, we
consider interpolating sesqui-harmonic Legendre curves in Sasakian space forms. We
obtain the necessary and sufficient conditions for Legendre curves in Sasakian space
forms to be interpolating sesqui-harmonic. We also give an example for an interpo-
lating sesqui-harmonic Legendre curve in a Sasakian space form.

2. Preliminaries

Let M = (M*"™! ¢,£,n,9) be an almost contact metric manifold with an almost
contact metric structure (¢,&,7m,g). A contact metric manifold (M1 ¢ & n,g) is
called a Sasakian manifold if it is normal, that is,

N¢ = —2d7]®£

where N, is the Nijenhuis tensor field of ¢ [I]. It is well-known that an almost contact
metric manifold is Sasakian if and only if

(Vxo)Y =g(X,Y){—n(Y)X
and
Vx§{ = —0X

[2]. The sectional curvature of a ¢-section is called a ¢-sectional curvature. When the
¢-sectional curvature is a constant, then the Sasakian manifold is called a Sasakian
space form and it is denoted by M (c) [2]. The curvature tensor R of a Sasakian space
form M(c) is given by

_c+3

R(X,Y)Z = 2 {g(V, 2)X = (X, 2)Y )
FE (X 02)6Y — glY, 02)6X +29(X, 6¥)67
W X)N(2)Y =n (V) (2) X +9(X. 2 (V)6 oV, 2m(X)E} (21)

forall X,Y,Z € TM [2].

A submanifold of a Sasakian manifold M is called an integral submanifold if n(X) =
0, for every tangent vector X. An integral curve of a Sasakian manifold M is called
a Legendre curve [2].
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3. Interpolating sesqui-harmonic Legendre curves in Sasakian space forms

Let v: I CR — (M™, g) be a curve parametrized by arc length in a Riemannian
manifold (M™,g) . Then 7 is called a Frenet curve of osculating order r, 1 < r < n,

By =T = 7/,
VTE|1 - k1E2>
VTEi = _ki—lEi—l + kiEi—l—la 2 S ) S n — 1, (31)

VTEn == _kn—lEn—b
where the function {ky = k, ko = 7, ks, ..., k,—1} are called the curvatures of v [12].

Firstly, we have the following theorem for an interpolating sesqui-harmonic Legendre
curve in a Sasakian space form:

Theorem 3.1. Let M(c) = (M*"*! ¢, &, m,9) be a Sasakian space form with constant
¢-sectional curvature ¢ and v : I C R — M(c) be a Legendre curve of osculating
order v and m = min{r,4}. Then v is interpolating sesqui-harmonic if and only if
there exists real numbers 41, 6o such that

(1) c=1o0r¢T L Ey or ¢T € {Fs, ..., E,}; and

(2) the first m of the following equations are satisfied:

— 36,kik, = 0, (3.2)
5 [k:'l' R k2 — (C Z 3) s
#3 (S ) mlor B - (S k(B | -k =0, (33)

c—1

5, [zk;kg k43 ( ) kg (6T, Ey)g(oT, Ey)

- (55 ) e =0, (3.4

09 [k1k2k3 +3 (%) k1g(¢T, E2)g(¢T, Ey)

_ (C; 1) by (EQ)H(E@] ~ 0. (3.5)

Proof. Let v : I — M be a Legendre curve of osculating order r in M (c). By the

use of (L)) and (BI), we have
7(y) = V1T = ki E. (3.6)

From (B.1]), we get
VoVl = —kiE) + k| Ey + kiko E3,



VrVeVeT = =3kiki By + (K — Kk} — kik3) B

(2K ks + kkb) By + (kkoks) By, (3.7)
R(T,V+T)T = — (C Z 3) k1 s
-3 (C; 1) kig(oT, E2)oT + (%) kin (E2) €. (3.8)
Using the equations (B.6]), (8.7)) and (B.8)) into the equation (4.1) in [3], we find

c+3
T51752(’}/) = (—352]{71]{73) E1 + [52 (]fil - ]{7:1S - ]{71]{73 + (T) ]{71) — 51]{51:| Eg

+52 (2]{3“{32 + k’lk’é) E3 + 52 (k’lk’gk‘g) E4

+3 (C < 1) Sokrg(¢T, E)T — (C - 1) Sokir () €. (3.9)

Taking the scalar product of equation (3.9) with Fs, F3 and Ej, respectively, then we
obtain the desired result. O

Now we shall discuss some special cases of Theorem [3.1k
Case I. c=1.
From Theorem 3.1, we have:

Proposition 3.1. Let M (1) = (M*"",¢,&,n, g) be a Sasakian space form with ¢ = 1
and vy : I C R — M(1) be a Legendre curve of osculating order r such that g—; # 0.
Then ~ s interpolating sesqui-harmonic if and only if
k1 = constant > 0, ko = constant,

o
B k=1- 2,

d2

]{32]{33 == 0

where 1 — g—; > 0, 61, 02 is a constant.

Proof. Assume that 7 is an interpolating sesqui-harmonic Legendre curve of osculating
order r in M(1) such that g—; # 0 and ¢ = 1. From Theorem B, we obtain the
result. U

Using Proposition 3.1, we have:

Theorem 3.2. Let M(1) = (M1 ¢, £,n,9) be a Sasakian space form with ¢ = 1
andy: 1 CR — M(1) be a non geodesic Legendre curve of osculating order r. Then
(1) It is a Legendre geodesic or
(2) ~ is interpolating sesqui-harmonic with g—; # 0 if and only if it is a Legendre

circle with ky = /1 — g—; where 1 — g—; > 0 is a constant or

(3) v is interpolating sesqui-harmonic with g—; # 0 if and only if it is a Legendre

heliz with k? + k3 = 1 — § where 1 — 2 >0, b1, b, is a constant.



5

In both cases, if 1 — % < 0, then such an interpolating sesqui-harmonic Legendre

62
curve does not exist.

Proof. Let v : I — M(1) be an interpolating sesqui-harmonic curve with g—; £ 0.

From Theorem Bl if we consider the osculating order r = 2, then ~ is a Legendre

circle with ky = /1 — g—; where 1 — g—; > () is a constant. Similarly, if we consider the

osculating order r = 3, then we obtain that k; is a non-zero constant. Thus, v is a

Legendre helix with k? + k2 = 1 — g—; where 1 — g—; > ( is a constant. On the other

hand, assume that « is a Legendre circle with £, = /1 — g—; or a Legendre helix with

kP4 ks=1-— 5—; where 1 — g—; > 0 is a constant. Obviously, 7 satisfies Theorem [3.1]

5
respectively. It is trivial that 1 — g—; < 0 cannot be possible. If 1 — g—; = 0, we obtain

a geodesic. This proves the theorem. 0

Case II. ¢ # 1 and ¢T 1 Es.
From Theorem [3.1I] we can state:

Proposition 3.2. Let M(c) = (M*"*1, ¢,£,m, g) be a Sasakian space form with ¢ # 1,
¢T L Ey andy:1 CR — M(c) be a Legendre curve of osculating order r such that
g—; # 0. Then 7 is interpolating sesqui-harmonic if and only if

ki1 = constant > 0, ko = constant,
c+3 4

4 0y’
]{32]{33 =0

ki + k3 =

where 01, 09 is a constant.

Proof. Let v be an interpolating sesqui-harmonic Legendre curve of osculating order
r in M(c) such that ¢ # 1, ¢T L FE5 and g—; # 0. From Theorem B, we get the
result. O

From [7], we have the following lemma:

Lemma 3.1. [7] Let v be a Legendre Frenet curve of osculating order 3 in a Sasakian
space form M(c) and ¢T L Ey. Then {T = Ey, By, E3, ¢T,N1¢T, £} is linearly inde-
pendent at any point of v and therefore n > 3.

Hence we can state:

Theorem 3.3. Let M(c) = (M** ¢, £, n,9) be a Sasakian space form with ¢ # 1,
¢T L FEy and~y: 1 CR — M(c) a Legendre curve of osculating order r.

(1) If c < =3 and g—; > 0, then 7y is interpolating sesqui-harmonic if and only if it
1S a geodesic.

(2) If ¢ > —3 and g—; < 0, then ~ is interpolating sesqui-harmonic if and only if
either



(a) v is of osculating order r = 2, n > 2 and v is a circle with ki = <2 — g—;, in
which case {T, Ey, oT, NV 1¢T, £} are linearly independent, or
(b) 7 is of osculating order r = 3, n >3 and 7 is a heliz with k3 + k3 = < — g—;,

in which case {T', Ey, B3, oT,N1¢T, £} are linearly independent, where 01, 0o € R.

Proof. (1) From Proposition 3.2 if we take ¢ < —3 and g—; > 0, it is easy to see that
v is interpolating sesqui-harmonic if and only if it is a geodesic.

(2) Assume that ¢ > —3, g—; < 0and v : I — M(c) be an interpolating sesqui-
harmonic curve. From Proposition B.2] if we take n > 2 and v is of osculating
order r = 2, then ~ is a circle with k? = %3 — g—;. Using Lemma [B.I, we have that
{T, Ey, ¢T,V1¢T, £} are linearly independent. Similarly, if we take n > 3 and + is of
osculating order » = 3, then we obtain that ks is a non-zero constant. Thus, v is a helix
with k% + k2 = %3 — g—;. Using Lemma B], we have that {T, Fy, E3, ¢T,V¢T,E} are

linearly independent. Conversely, assume that «y is a Legendre circle with k? = %3 — g—;

or a Legendre helix with kf + k3 = <2 — g—;. Obviously, v satisfies Theorem [B.1]
respectively. Hence, we obtain the desired result. O

Case III. ¢ # 1 and ¢T || Es.
From Theorem 3.1, we have:

Proposition 3.3. Let M(c) = (M*""! ¢, £, 9) be a Sasakian space form with ¢ # 1
and v : I CR — M(c) be a Legendre curve of osculating order r with ¢T || Ey and
g—; # 0. Then ~y is interpolating sesqui-harmonic if and only if

ki1 = constant > 0, ky = constant,

J
kf—l—k‘%:c—é—l,
2

koks =0
where d1, 09 is a constant.

Proof. Assume + is an interpolating sesqui-harmonic Legendre curve in M (c) such
that ¢ # 1, ¢T || B2 and g—; # 0. From Theorem [B.I], we get the result. O

Hence we can state:

Theorem 3.4. Let M(c) = (M**1 ¢,&, n,9) be a Sasakian space form with ¢ # 1
and v : I C R — M(c) a Legendre curve of osculating order r such that ¢T || Es.
Then {T, ¢T,E} is the Frenet frame field of ~.

(1) Ifc< 1 and g—; > 0, then ~ s interpolating sesqui-harmonic if and only if it is
a geodesic.

(2) If ¢ > 1 and g—; < 0, then 7y is interpolating sesqui-harmonic if and only if it is
a heliz with ki = ¢ —1— 8, (ky = 1) where 61, 6, € R.



Proof. If we take ¢T || Eo, we get g (¢T, Es) = £1, g(¢T, E3) = g (¢T, E4) = 0.
(1) From Proposition 3.3l and the above equations and if we take ¢ < 1 and g—; >0,
it is easy to see that 7 is interpolating sesqui-harmonic if and only if it is a geodesic.

(2) If ¢ > 1, g—; < 0 from Proposition 3.3 and the above equations, we have

k, =constant and k} = ¢ — 1 — g—;, and ko = 1. Conversely, assume that ~v is a
Legendre helix with k2 = ¢ — 1 — g—; and ky = 1. Then v satisfies Theorem [3.1]
obviously. This completes the proof of the theorem. O

Case IV. ¢ # 1 and ¢(¢T, Ey) # 0,1, —1.

Proposition 3.4. Let M(c) = (M*"*1, ¢,£,m, g) be a Sasakian space form with ¢ # 1,
g(¢T, Es) #0,1,—1 and v: I C R — M(c) a Legendre curve of osculating order r
such that 4 <r <2n+1, n > 2. Then v is interpolating sesqui-harmonic with g—; #0
if and only if

ki1 = constant > 0,

+ 3 3(0—1) 51
R4 h2="10 2
1 2 1 1 f 5
, 3(c—1
k2:_ ( 4 )fg(E37¢T)7

by =~ 2D g (8, 01).

Proof. Assume that v is an interpolating sesqui-harmonic Legendre Frenet curve such
that g(¢T, F») is not a constant equal to 0,1 or —1. In this case, we get 4 < r < 2n+1,
n > 2 and ¢T € span{Es, E3, E,}.
Hence, we can take f(t) = g(¢T, Es). So by a differentiation, we obtain
f'(t) = g(VroT, Ey) + g(¢T, V1 Ly)

= —k1g (T, ¢T) + kaog (E3, ¢T) + g (E2, &) + k19 (B, ¢Es) .
Since 7 is a Legendre curve and ¢ is anti-symmetric, we have n(FEy) =0, g (T, ¢T) = 0
and g (Ey, ¢F3) = 0. Thus we obtain

f'(s) = kag (E3,0T). (3.10)
Additionally, we can write
T = g (¢T, Ez) Eo + g (¢, E3) E5 + g (¢E4, Ey) Ey. (3.11)

From Theorem [3.1] the equations (3.10) and (3.11]), the curve 7 is interpolating sesqui-
harmonic if and only if

k1 = constant,

+ 3 3(0—1) 51
B2 k2= 22
1T K3 1 1 f 5,
, 3(c—1
k= -3V (g, o1),
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ko =~ 2D 1y (1, o1,

If y: I CR — M(c) satisfies the converse statement, it is obvious that the first four
of the equations in Theorem [3.T] are satisfied. Thus + is interpolating sesqui-harmonic.
This proves the theorem. U

Using the equation (B3.I0) and the third equation of Proposition 3.4 we obtain

r 3(6_1) __3(6_1) L/
ky = —ng (B3, ¢T) = 1 o
by = -2 D gy
-l (64_ Y2 4 g (3.12)

where wy =constant. Substituting the equation (3.12) in the second equation of
Proposition B4l we get

_c+3  3(c—1) ,
= + 5 f 5 wo.
Then we have f =constant. Thus ky =constant > 0, g(F3,¢T) = 0 and then
¢oT = fEy + g(¢T, Ey) Ey. We obtain that there exists a unique constant oy €
(0,27)\ {Z, 7,2} such that f = cosag and g (Ey, ¢T') = sin ay.

So we can state:

ki

Theorem 3.5. Let M(c) = (M** ¢, €, n,9) be a Sasakian space form with ¢ # 1,
n>2andy: I CR — M(c) a Legendre curve of osculating order r such that
g(¢T7 E2) % 07 17 —1.

(1) If c < =3 and g—; > 0, then 7y is interpolating sesqui-harmonic if and only if it
s a geodesic.

(2) If ¢ > —3 and g—; < 0, then ~ is interpolating sesqui-harmonic if and only if
¢T = cos agFs + sin apEy,

ki, ko, k3 = constant > 0,

3 3(c—1 )
et + (c )coszao——l,

4 4 P

-1
koks = —% sin 2a,

ki + k5 =

where ag € (0,2m)\ {3, 7,2} is constant such that (c+ 3+ 3 (c — 1) cos? ag) 65 —
461 > 0 and 3 (¢ — 1) sin 2ap < 0.

Remark 3.1. Forc# 1 and g(¢T, E3) # 0,1, —1, there are also interpolating sesqui-
harmonic curves which are not helices.



Now, we give brief information about the Sasakian space form R*'*!(—3) [2]:
Let us take M = R?""! with the standard coordinate functions (x1, ..., Tn, Y1, .., Yn, 2)

the contact structure n = 1(dz — 3 y;dz;), the characteristic vector field { = 2.2 and
i=1
the tensor field ¢ given by

0 6, 0
0 Y; 0

The Riemannian metric is g = n®n + % Z ((dz;)? + (dy;)?) . Thus, R*"T1(-3) is a

Sasakian space form with constant ¢— sectlonal curvature ¢ = —3. The vector fields
0 0 0 0
X, =2—, Xiin Xi=2(—+y=—), 1<i<n, £E=2—, 3.13
form a g-orthonormal basis and Levi-Civita connection is obtained as
Vx,X;=Vx,, . Xjm =0, Vx, X1, = 0;;¢, Vx,,,X; =—0;§, (3.14)
szf - VgXZ - _Xn—',-ia in+7n§ - VﬁXH-n - Xz (315)

(see [).
Now, we give an example for interpolating sesqui-harmonic Legendre curves in
R®(-3) :

Example. Let v = (71,...,75) be a unit speed Legendre curve in R3(—3). We can
write the tangent vector field T of

1
VT = 5 {15 X1 4+ 73X + 1 Xs + X + (V5 — 17 —127) € -
Using the above equation, n(7") = 0 and ¢g(7,T) = 1, we have

Vs =75 + 1
and
()" + o+ (5)° =4
So for a Legendre curve (3.14)), (3.15) and (B.13) gives us

1
VT = 5(73X1 + 7 Xo + V1 X3 + 75 Xy), (3.16)
and )
oT = B (=1 X1 — %X + 75Xs + 7, Xy) - (3.17)

From (B.16) and (3I7), ¢T L Es if and only if

S/ /i /i /i

Y173 +Y2Ya = Y31 T VaVe-

So we can state the following example:
Let us take v(t) = (sin2t, —cos2t,0,0,1) in R°(—3). By the use of Theorem [B.1]
and the above equations, 7 is an interpolating sesqui-harmonic Legendre curve with
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osculating order r = 2, ky = 2, 0 = =8, 09 = 2 and ¢T 1 E,. We can see that The-
orem [3.]] are verified. From the equations (3-1) in [7], the curve « is not biharmonic.
Hence the biharmonicity and interpolating sesqui-harmonic of v are different.
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