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On Interpolating Sesqui-Harmonic Legendre Curves in
Sasakian Space Forms
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Abstract. We consider interpolating sesqui-harmonic Legendre curves in Sasakian
space forms. We find the necessary and sufficient conditions for Legendre curves
in Sasakian space forms to be interpolating sesqui-harmonic. Finally, we obtain an
example for an interpolating sesqui-harmonic Legendre curve in a Sasakian space form.
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1. Introduction

A map ϕ : (M, g) → (N, h) between Riemannian manifolds is called a harmonic

map and a biharmonic map, respectively if it is a critical point of the E(ϕ) and E2(ϕ)

E(ϕ) =

∫

Ω

‖dϕ‖2 dνg,

E2(ϕ) =

∫

Ω

‖τ(ϕ)‖2 dνg,

where Ω is a compact domain of M . The harmonic map equation is

τ(ϕ) = tr(∇dϕ) = 0, (1.1)

and it is called the tension field of ϕ [5]. The Euler-Lagrange equation of E2(ϕ) is

τ2(ϕ) = tr(∇ϕ∇ϕ −∇ϕ
∇
)τ(ϕ)− tr(RN(dϕ, τ(ϕ))dϕ) = 0, (1.2)

and it is called the bitension field of ϕ [11].
In [3], Branding defined and considered interpolating sesqui-harmonic maps between

Riemannian manifolds. The author introduced an action functional for maps between
Riemannian manifolds that interpolated between the actions for harmonic and bihar-
monic maps. The map ϕ is said to be interpolating sesqui-harmonic if it is a critical
point of Eδ1,δ2(ϕ)

Eδ1,δ2(ϕ) = δ1

∫

Ω

‖dϕ‖2 dνg + δ2

∫

Ω

‖τ(ϕ)‖2 dνg, (1.3)

where Ω is a compact domain of M and δ1, δ2 ∈ R [3]. The interpolating sesqui-
harmonic map equation is

τδ1,δ2(ϕ) = δ2τ2(ϕ)− δ1τ(ϕ) = 0 (1.4)

for δ1, δ2 ∈ R [3]. An interpolating sesqui-harmonic map is biminimal if variations of
(1.3) that are normal to the image ϕ(M) ⊂ N and δ2 = 1, δ1 > 0 [13]. For some
recent study of biminimal immersions see [8], [13], [14] and [15].
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Interpolating sesqui-harmonic curves in a 3-dimensional sphere were studied in [3].
In [6] and [7], Fetcu and Oniciuc considered biharmonic Legendre curves in Sasakian
space forms. In [4], Cho, Inoguchi and Lee studied affine biharmonic curves in 3-
dimensional pseudo-Hermitian geometry. In [10], Inoguchi and Lee studied affine
biharmonic curves in 3-dimensional homogeneous geometries. In [16], the second au-
thor and Güvenç studied biharmonic Legendre curves in generalized Sasakian space
forms. In [9], Güvenç and the second author studied f -biharmonic Legendre curves
in Sasakian space forms. Motivated by the above studies, in the present paper, we
consider interpolating sesqui-harmonic Legendre curves in Sasakian space forms. We
obtain the necessary and sufficient conditions for Legendre curves in Sasakian space
forms to be interpolating sesqui-harmonic. We also give an example for an interpo-
lating sesqui-harmonic Legendre curve in a Sasakian space form.

2. Preliminaries

Let M = (M2n+1, φ, ξ, η, g) be an almost contact metric manifold with an almost
contact metric structure (φ, ξ, η, g). A contact metric manifold (M2n+1, φ, ξ, η, g) is
called a Sasakian manifold if it is normal, that is,

Nφ = −2dη ⊗ ξ

where Nφ is the Nijenhuis tensor field of φ [1]. It is well-known that an almost contact
metric manifold is Sasakian if and only if

(∇Xφ) Y = g(X, Y )ξ − η (Y )X

and

∇Xξ = −φX

[2]. The sectional curvature of a φ-section is called a φ-sectional curvature. When the
φ-sectional curvature is a constant, then the Sasakian manifold is called a Sasakian

space form and it is denoted by M(c) [2]. The curvature tensor R of a Sasakian space
form M(c) is given by

R (X, Y )Z =
c+ 3

4
{g(Y, Z)X − g(X,Z)Y }

+
c− 1

4
{g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY )φZ

+η (X) η (Z)Y − η (Y ) η (Z)X + g(X,Z)η (Y ) ξ − g(Y, Z)η (X) ξ} (2.1)

for all X, Y, Z ∈ TM [2].
A submanifold of a Sasakian manifold M is called an integral submanifold if η(X) =

0, for every tangent vector X . An integral curve of a Sasakian manifold M is called
a Legendre curve [2].
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3. Interpolating sesqui-harmonic Legendre curves in Sasakian space forms

Let γ : I ⊂ R −→ (Mn, g) be a curve parametrized by arc length in a Riemannian
manifold (Mn, g) . Then γ is called a Frenet curve of osculating order r, 1 ≤ r ≤ n,
if there exists orthonormal vector fields {Ei}i=1,2,...n along γ such that

E1 = T = γ′,

∇TE1 = k1E2,

∇TEi = −ki−1Ei−1 + kiEi+1, 2 ≤ i ≤ n− 1, (3.1)

∇TEn = −kn−1En−1,

where the function {k1 = k, k2 = τ, k3, ..., kn−1} are called the curvatures of γ [12].
Firstly, we have the following theorem for an interpolating sesqui-harmonic Legendre

curve in a Sasakian space form:

Theorem 3.1. Let M(c) = (M2n+1, φ, ξ, η, g) be a Sasakian space form with constant

φ-sectional curvature c and γ : I ⊂ R −→ M(c) be a Legendre curve of osculating

order r and m = min{r, 4}. Then γ is interpolating sesqui-harmonic if and only if

there exists real numbers δ1, δ2 such that

(1) c = 1 or φT ⊥ E2 or φT ∈ {E2, ..., Em} ; and
(2) the first m of the following equations are satisfied:

− 3δ2k1k
′

1 = 0, (3.2)

δ2

[

k′′

1 − k3
1 − k1k

2
2 −

(

c+ 3

4

)

k1

+3

(

c− 1

4

)

k1 [g(φT,E2)]
2 −

(

c− 1

4

)

k1 [η (E2)]
2

]

− δ1k1 = 0, (3.3)

δ2

[

2k′

1k2 + k1k
′

2 + 3

(

c− 1

4

)

k1g(φT,E2)g(φT,E3)

−

(

c− 1

4

)

k1η (E2) η (E3)

]

= 0, (3.4)

δ2

[

k1k2k3 + 3

(

c− 1

4

)

k1g(φT,E2)g(φT,E4)

−

(

c− 1

4

)

k1η (E2) η (E4)

]

= 0. (3.5)

Proof. Let γ : I −→ M be a Legendre curve of osculating order r in M(c). By the
use of (1.1) and (3.1), we have

τ(γ) = ∇TT = k1E2. (3.6)

From (3.1), we get
∇T∇TT = −k2

1E1 + k′

1E2 + k1k2E3,
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∇T∇T∇TT = −3k1k
′

1E1 +
(

k′′

1 − k3
1 − k1k

2
2

)

E2

+ (2k′

1k2 + k1k
′

2)E3 + (k1k2k3)E4, (3.7)

R(T,∇TT )T = −

(

c+ 3

4

)

k1E2

− 3

(

c− 1

4

)

k1g(φT,E2)φT +

(

c− 1

4

)

k1η (E2) ξ. (3.8)

Using the equations (3.6), (3.7) and (3.8) into the equation (4.1) in [3], we find

τδ1,δ2(γ) = (−3δ2k1k
′

1)E1 +

[

δ2

(

k′′

1 − k3
1 − k1k

2
2 +

(

c+ 3

4

)

k1

)

− δ1k1

]

E2

+δ2 (2k
′

1k2 + k1k
′

2)E3 + δ2 (k1k2k3)E4

+ 3

(

c− 1

4

)

δ2k1g(φT,E2)φT −

(

c− 1

4

)

δ2k1η (E2) ξ. (3.9)

Taking the scalar product of equation (3.9) with E2, E3 and E4 respectively, then we
obtain the desired result. �

Now we shall discuss some special cases of Theorem 3.1:
Case I. c = 1.
From Theorem 3.1, we have:

Proposition 3.1. Let M(1) = (M2n+1, φ, ξ, η, g) be a Sasakian space form with c = 1
and γ : I ⊂ R −→ M(1) be a Legendre curve of osculating order r such that δ1

δ2
6= 0.

Then γ is interpolating sesqui-harmonic if and only if

k1 = constant > 0, k2 = constant,

k2
1 + k2

2 = 1−
δ1

δ2
,

k2k3 = 0

where 1− δ1
δ2

> 0, δ1, δ2 is a constant.

Proof. Assume that γ is an interpolating sesqui-harmonic Legendre curve of osculating
order r in M(1) such that δ1

δ2
6= 0 and c = 1. From Theorem 3.1, we obtain the

result. �

Using Proposition 3.1, we have:

Theorem 3.2. Let M(1) = (M2n+1, φ, ξ, η, g) be a Sasakian space form with c = 1
and γ : I ⊂ R −→ M(1) be a non geodesic Legendre curve of osculating order r. Then

(1) It is a Legendre geodesic or

(2) γ is interpolating sesqui-harmonic with δ1
δ2

6= 0 if and only if it is a Legendre

circle with k1 =
√

1− δ1
δ2

where 1− δ1
δ2

> 0 is a constant or

(3) γ is interpolating sesqui-harmonic with δ1
δ2

6= 0 if and only if it is a Legendre

helix with k2
1 + k2

2 = 1− δ1
δ2

where 1− δ1
δ2

> 0, δ1, δ2 is a constant.
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In both cases, if 1 − δ1
δ2

< 0, then such an interpolating sesqui-harmonic Legendre

curve does not exist.

Proof. Let γ : I −→ M(1) be an interpolating sesqui-harmonic curve with δ1
δ2

6= 0.
From Theorem 3.1, if we consider the osculating order r = 2, then γ is a Legendre

circle with k1 =
√

1− δ1
δ2

where 1− δ1
δ2

> 0 is a constant. Similarly, if we consider the

osculating order r = 3, then we obtain that k2 is a non-zero constant. Thus, γ is a
Legendre helix with k2

1 + k2
2 = 1 − δ1

δ2
where 1 − δ1

δ2
> 0 is a constant. On the other

hand, assume that γ is a Legendre circle with k1 =
√

1− δ1
δ2

or a Legendre helix with

k2
1 + k2

2 = 1 − δ1
δ2

where 1 − δ1
δ2

> 0 is a constant. Obviously, γ satisfies Theorem 3.1,

respectively. It is trivial that 1 − δ1
δ2

< 0 cannot be possible. If 1− δ1
δ2

= 0, we obtain
a geodesic. This proves the theorem. �

Case II. c 6= 1 and φT ⊥ E2.

From Theorem 3.1, we can state:

Proposition 3.2. Let M(c) = (M2n+1, φ, ξ, η, g) be a Sasakian space form with c 6= 1,
φT ⊥ E2 and γ : I ⊂ R −→ M(c) be a Legendre curve of osculating order r such that
δ1
δ2

6= 0. Then γ is interpolating sesqui-harmonic if and only if

k1 = constant > 0, k2 = constant,

k2
1 + k2

2 =
c + 3

4
−

δ1

δ2
,

k2k3 = 0

where δ1, δ2 is a constant.

Proof. Let γ be an interpolating sesqui-harmonic Legendre curve of osculating order
r in M(c) such that c 6= 1, φT ⊥ E2 and δ1

δ2
6= 0. From Theorem 3.1, we get the

result. �

From [7], we have the following lemma:

Lemma 3.1. [7] Let γ be a Legendre Frenet curve of osculating order 3 in a Sasakian

space form M(c) and φT ⊥ E2. Then {T = E1, E2, E3, φT,∇TφT, ξ} is linearly inde-

pendent at any point of γ and therefore n ≥ 3.

Hence we can state:

Theorem 3.3. Let M(c) = (M2n+1, φ, ξ, η, g) be a Sasakian space form with c 6= 1,
φT ⊥ E2 and γ : I ⊂ R −→ M(c) a Legendre curve of osculating order r.

(1) If c ≤ −3 and δ1
δ2

≥ 0, then γ is interpolating sesqui-harmonic if and only if it

is a geodesic.

(2) If c > −3 and δ1
δ2

< 0, then γ is interpolating sesqui-harmonic if and only if

either
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(a) γ is of osculating order r = 2, n ≥ 2 and γ is a circle with k2
1 = c+3

4
− δ1

δ2
, in

which case {T,E2, φT,∇TφT, ξ} are linearly independent, or

(b) γ is of osculating order r = 3, n ≥ 3 and γ is a helix with k2
1 + k2

2 = c+3

4
− δ1

δ2
,

in which case {T,E2, E3, φT,∇TφT, ξ} are linearly independent, where δ1, δ2 ∈ R.

Proof. (1) From Proposition 3.2, if we take c ≤ −3 and δ1
δ2

≥ 0, it is easy to see that
γ is interpolating sesqui-harmonic if and only if it is a geodesic.

(2) Assume that c > −3, δ1
δ2

< 0 and γ : I −→ M(c) be an interpolating sesqui-
harmonic curve. From Proposition 3.2, if we take n ≥ 2 and γ is of osculating
order r = 2, then γ is a circle with k2

1 = c+3

4
− δ1

δ2
. Using Lemma 3.1, we have that

{T,E2, φT,∇TφT, ξ} are linearly independent. Similarly, if we take n ≥ 3 and γ is of
osculating order r = 3, then we obtain that k2 is a non-zero constant. Thus, γ is a helix
with k2

1 + k2
2 =

c+3

4
− δ1

δ2
. Using Lemma 3.1, we have that {T,E2, E3, φT,∇TφT, ξ} are

linearly independent. Conversely, assume that γ is a Legendre circle with k2
1 = c+3

4
− δ1

δ2

or a Legendre helix with k2
1 + k2

2 = c+3

4
− δ1

δ2
. Obviously, γ satisfies Theorem 3.1,

respectively. Hence, we obtain the desired result. �

Case III. c 6= 1 and φT ‖ E2.

From Theorem 3.1, we have:

Proposition 3.3. Let M(c) = (M2n+1, φ, ξ, η, g) be a Sasakian space form with c 6= 1
and γ : I ⊂ R −→ M(c) be a Legendre curve of osculating order r with φT ‖ E2 and
δ1
δ2

6= 0. Then γ is interpolating sesqui-harmonic if and only if

k1 = constant > 0, k2 = constant,

k2
1 + k2

2 = c−
δ1

δ2
,

k2k3 = 0

where δ1, δ2 is a constant.

Proof. Assume γ is an interpolating sesqui-harmonic Legendre curve in M(c) such
that c 6= 1, φT ‖ E2 and δ1

δ2
6= 0. From Theorem 3.1, we get the result. �

Hence we can state:

Theorem 3.4. Let M(c) = (M2n+1, φ, ξ, η, g) be a Sasakian space form with c 6= 1
and γ : I ⊂ R −→ M(c) a Legendre curve of osculating order r such that φT ‖ E2.

Then {T, φT, ξ} is the Frenet frame field of γ.

(1) If c < 1 and δ1
δ2

≥ 0, then γ is interpolating sesqui-harmonic if and only if it is

a geodesic.

(2) If c > 1 and δ1
δ2

< 0, then γ is interpolating sesqui-harmonic if and only if it is

a helix with k2
1 = c− 1− δ1

δ2
, (k2 = 1) where δ1, δ2 ∈ R.
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Proof. If we take φT ‖ E2, we get g (φT,E2) = ±1, g (φT,E3) = g (φT,E4) = 0.
(1) From Proposition 3.3 and the above equations and if we take c ≤ 1 and δ1

δ2
≥ 0,

it is easy to see that γ is interpolating sesqui-harmonic if and only if it is a geodesic.
(2) If c > 1, δ1

δ2
< 0 from Proposition 3.3 and the above equations, we have

k1 =constant and k2
1 = c − 1 − δ1

δ2
, and k2 = 1. Conversely, assume that γ is a

Legendre helix with k2
1 = c − 1 − δ1

δ2
and k2 = 1. Then γ satisfies Theorem 3.1

obviously. This completes the proof of the theorem. �

Case IV. c 6= 1 and g(φT,E2) 6= 0, 1,−1.

Proposition 3.4. Let M(c) = (M2n+1, φ, ξ, η, g) be a Sasakian space form with c 6= 1,
g(φT,E2) 6= 0, 1,−1 and γ : I ⊂ R −→ M(c) a Legendre curve of osculating order r

such that 4 ≤ r ≤ 2n+1, n ≥ 2. Then γ is interpolating sesqui-harmonic with δ1
δ2

6= 0
if and only if

k1 = constant > 0,

k2
1 + k2

2 =
c + 3

4
+

3 (c− 1)

4
f 2 −

δ1

δ2
,

k′

2 = −
3 (c− 1)

4
fg (E3, φT ) ,

k2k3 = −
3 (c− 1)

4
fg (E4, φT ) .

Proof. Assume that γ is an interpolating sesqui-harmonic Legendre Frenet curve such
that g(φT,E2) is not a constant equal to 0, 1 or −1. In this case, we get 4 ≤ r ≤ 2n+1,
n ≥ 2 and φT ∈ span {E2, E3, E4}.

Hence, we can take f(t) = g(φT,E2). So by a differentiation, we obtain

f ′(t) = g(∇TφT,E2) + g(φT,∇TE2)

= −k1g (T, φT ) + k2g (E3, φT ) + g (E2, ξ) + k1g (E2, φE2) .

Since γ is a Legendre curve and φ is anti-symmetric, we have η(E2) = 0, g (T, φT ) = 0
and g (E2, φE2) = 0. Thus we obtain

f ′(s) = k2g (E3, φT ) . (3.10)

Additionally, we can write

φT = g (φT,E2)E2 + g (φT,E3)E3 + g (φE4, E4)E4. (3.11)

From Theorem 3.1, the equations (3.10) and (3.11), the curve γ is interpolating sesqui-
harmonic if and only if

k1 = constant,

k2
1 + k2

2 =
c + 3

4
+

3 (c− 1)

4
f 2 −

δ1

δ2
,

k′

2 = −
3 (c− 1)

4
fg (E3, φT ) ,



8

k2k3 = −
3 (c− 1)

4
fg (E4, φT ) .

If γ : I ⊂ R −→ M(c) satisfies the converse statement, it is obvious that the first four
of the equations in Theorem 3.1 are satisfied. Thus γ is interpolating sesqui-harmonic.
This proves the theorem. �

Using the equation (3.10) and the third equation of Proposition 3.4, we obtain

k′

2 = −
3 (c− 1)

4
fg (E3, φT ) = −

3 (c− 1)

4
f
f ′

k2

k2k
′

2 = −
3 (c− 1)

4
ff ′

k2
2 = −

3 (c− 1)

4
f 2 + w0 (3.12)

where w0 =constant. Substituting the equation (3.12) in the second equation of
Proposition 3.4, we get

k2
1 =

c+ 3

4
+

3 (c− 1)

2
f 2 −

δ1

δ2
− w0.

Then we have f =constant. Thus k2 =constant > 0, g (E3, φT ) = 0 and then
φT = fE2 + g (φT,E4)E4. We obtain that there exists a unique constant α0 ∈
(0, 2π) \

{

π
2
, π, 3π

2

}

such that f = cosα0 and g (E4, φT ) = sinα0.

So we can state:

Theorem 3.5. Let M(c) = (M2n+1, φ, ξ, η, g) be a Sasakian space form with c 6= 1,
n ≥ 2 and γ : I ⊂ R −→ M(c) a Legendre curve of osculating order r such that

g(φT,E2) 6= 0, 1,−1.
(1) If c ≤ −3 and δ1

δ2
≥ 0, then γ is interpolating sesqui-harmonic if and only if it

is a geodesic.

(2) If c > −3 and δ1
δ2

< 0, then γ is interpolating sesqui-harmonic if and only if

φT = cosα0E2 + sinα0E4,

k1, k2, k3 = constant > 0,

k2
1 + k2

2 =
c+ 3

4
+

3 (c− 1)

4
cos2 α0 −

δ1

δ2
,

k2k3 = −
3 (c− 1)

8
sin 2α0,

where α0 ∈ (0, 2π) \
{

π
2
, π, 3π

2

}

is constant such that (c+ 3 + 3 (c− 1) cos2 α0) δ2 −
4δ1 > 0 and 3 (c− 1) sin 2α0 < 0.

Remark 3.1. For c 6= 1 and g(φT,E2) 6= 0, 1,−1, there are also interpolating sesqui-

harmonic curves which are not helices.
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Now, we give brief information about the Sasakian space form R
2n+1(−3) [2]:

Let us takeM = R
2n+1 with the standard coordinate functions (x1, ..., xn, y1, ..., yn, z) ,

the contact structure η = 1

2
(dz−

n
∑

i=1

yidxi), the characteristic vector field ξ = 2 ∂
∂z

and

the tensor field φ given by

φ =





0 δij 0
−δij 0 0
0 yj 0



 .

The Riemannian metric is g = η ⊗ η + 1

4

n
∑

i=1

((dxi)
2 + (dyi)

2) . Thus, R2n+1(−3) is a

Sasakian space form with constant φ−sectional curvature c = −3. The vector fields

Xi = 2
∂

∂yi
, Xi+n = φXi = 2(

∂

∂xi

+ yi
∂

∂z
), 1 ≤ i ≤ n, ξ = 2

∂

∂z
, (3.13)

form a g-orthonormal basis and Levi-Civita connection is obtained as

∇Xi
Xj = ∇Xi+n

Xj+n = 0, ∇Xi
Xj+n = δijξ, ∇Xi+n

Xj = −δijξ, (3.14)

∇Xi
ξ = ∇ξXi = −Xn+i, ∇Xi+m

ξ = ∇ξXi+n = Xi (3.15)

(see [1]).
Now, we give an example for interpolating sesqui-harmonic Legendre curves in

R
5(−3) :

Example. Let γ = (γ1, ..., γ5) be a unit speed Legendre curve in R
5(−3). We can

write the tangent vector field T of

γT =
1

2
{γ′

3X1 + γ′

4X2 + γ′

1X3 + γ′

2X4 + (γ′

5 − γ′

1γ3 − γ′

2γ4) ξ} .

Using the above equation, η(T ) = 0 and g(T, T ) = 1, we have

γ′

5 = γ′

1γ3 + γ′

2γ4

and
(γ′

1)
2 + ... + (γ′

5)
2 = 4.

So for a Legendre curve (3.14), (3.15) and (3.13) gives us

∇TT =
1

2
(γ′′

3X1 + γ′′

4X2 + γ′′

1X3 + γ′′

2X4) , (3.16)

and

φT =
1

2
(−γ′

1X1 − γ′

2X2 + γ′

3X3 + γ′

4X4) . (3.17)

From (3.16) and (3.17), φT ⊥ E2 if and only if

γ′

1γ
′′

3 + γ′

2γ
′′

4 = γ′

3γ
′′

1 + γ′

4γ
′′

2 .

So we can state the following example:
Let us take γ(t) = (sin 2t,− cos 2t, 0, 0, 1) in R

5(−3). By the use of Theorem 3.1
and the above equations, γ is an interpolating sesqui-harmonic Legendre curve with
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osculating order r = 2, k1 = 2, δ1 = −8, δ2 = 2 and φT ⊥ E2. We can see that The-
orem 3.1 are verified. From the equations (3-1) in [7], the curve γ is not biharmonic.
Hence the biharmonicity and interpolating sesqui-harmonic of γ are different.
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[16] Özgür, C., Güvenç, Ş., On some classes of biharmonic Legendre curves in generalized Sasakian
space forms, Collect. Math., 65(2), 203–218 (2014).

Fatma KARACA
Beykent University,
Department of Mathematics,
34550, Beykent, Buyukcekmece,
Istanbul, TURKEY.
E-mail: fatmagurlerr@gmail.com

Cihan ÖZGÜR
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