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Abstract. In this manuscript, we have proposed a comparison based on newly

defined fractional derivative operators which are called as Caputo-Fabrizio
(CF) and Atangana-Baleanu (AB). In 2015, Caputo and Fabrizio established

a new fractional operator by using exponential kernel. After one year, Atan-

gana and Baleanu recommended a different-type fractional operator that uses
the generalized Mittag-Leffler function (MLF). Many real-life problems can be

modelled and can be solved by numerical-analytical solution methods which
are derived with these operators. In this paper, we suggest an approximate so-

lution method for PDEs of fractional order by using the mentioned operators.

We consider the Laplace homotopy transformation method (LHTM) which is
the combination of standard homotopy technique (SHT) and Laplace transfor-

mation method (LTM). In this study, we aim to demonstrate the effectiveness

of the aforementioned method by comparing the solutions we have achieved
with the exact solutions. Furthermore, by constructing the error analysis, we

test the practicability and usefulness of the method.

1. Introduction. In modelling real-life problems, some fractional derivative oper-
ators have been used up-to-now. For this reason, different-type fractional operators
have been established. Among them, classical Liouville-Caputo operator defined
by power law, Caputo-Fabrizio operator (CFO) [13] defined with exponential decay
law and Atangana-Baleanu operator (ABO) [9] uses the Mittag-Leffler kernel have
been used extensively.

These operators are very efficient to model the complex nonlinear fractional dy-
namical systems and to solve them. Caputo and Fabrizio have given a different
perspective to fractional operators by introducing a new fractional operator with-
out singular kernel. This definition comes naturally from the constitutive equation
relating the flux and gradient by exponential damping functions. In addition to be-
ing a very useful mathematical definition, it is an operator that is highly preferred
in terms of physical meaning [17].
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Especially in recent years, many important theoretical results and applications
have been obtained with the CFO and ABO. Some interesting studies such as [17,
10, 2, 3, 18, 25, 24, 8] have been resulted in the sense of the CFO.

However, some studies have pointed out that the kernel in integral of the CFO
is non-singular and non-local. Besides, the mentioned integral has not a fractional
structure in the CFO. To avoid from this situation, the ABO [9] was defined by
the generalized MLF. In this definition, the kernel has non-singularity and non-
locality. In addition to this, the integral has been regarded as fractional. After this
definition, many physical, mathematical, chemical, biological problems have been
solved by using the ABO. For example, [15, 6, 7, 1, 11, 4, 26] are the other studies
based on application of AB fractional derivative.

On the other hand, many studies based on the comparison CFO and ABO have
been made in a short time. Koca and Atangana [19] examined the Cattaneo-Hristov
model in view of the CFO and ABO. In another study [5], the authors compared
the CFO and ABO on Allen Cahn model. [22, 23, 16] are some comparison studies
based on the CFO and ABO.

In this paper, the mentioned LHTM for numerical-approximate solutions of
FPDEs is considered. In order to show the efficiency and accurateness of the
method, it is applied to the several illustrative problems. When looking at the
results, it can be seen clearly that the suggested method is very influential and
infallible for solving FPDEs.

2. Some preliminaries. In this section, we present some important definitions of
fractional calculus and Laplace transform.

Definition 2.1. The classical case of Caputo operator is given as [14]

Dα
t f (t) =

1

Γ (1− α)

∫ t

a

f ′ (τ)

(t− τ)
α dτ, 0 < α ≤ 1. (1)

Definition 2.2. The Caputo-Fabrizio (CF) time fractional derivative is given by
[13]

CF
0 Dα

t f (t) =
B (α)

1− α

∫ t

a

f ′ (τ) exp

[
−α (t− τ)

1− α

]
dτ, (2)

where B (α) is a normalization function such that B (0) = B (1) = 1.

Definition 2.3. The LT of the CFO CF
0 Dα

t f (t) can be written as [13, 12]:

L
{
CF
0 Dα+n

t f (t)
}

(s) = 1
1−αL

{
f (α+n) (t)

}
L
{

exp
[
− αt

1−α

]}
= sn+1L{f(t)}−snf(0)−sn−1f ′(0)−···−f(n)(0)

s+α(1−s) .
(3)

From Definition 2.3, we have the results:

L
{
CF
0 Dα

t f (t)
}

(s) = sL{f(t)}−f(0)
s+α(1−s) , n = 0,

L
{
CF
0 Dα+1

t f (t)
}

(s) = s2L{f(t)}−sf(0)−f ′(0)
s+α(1−s) , n = 1.

(4)

Definition 2.4. The ABO in the sense of Liouville-Caputo is given as [9]:

ABC
b Dα

t f (t) =
B (α)

1− α

∫ t

b

f ′ (τ)Eα

[
−α (t− τ)

α

1− α

]
dτ, (5)

where f ∈ H1 (a, b) , b > a, α ∈ [0, 1] .
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Definition 2.5. The LT of the ABO ABC
0 Dα

t f (t) is given by [9]

L
{
ABC
0 Dα

t f (t)
}

(s) =
B (α)

1− α
sαL{f (t)} (s)− sα−1f (0)

sα + α
1−α

. (6)

3. Solution method which is described with the CFO. Consider the follow-
ing model constructed with the CFO [20]:

CF
0 Dα

t u (x, t) + η (x)
∂u (x, t)

∂x
+ γ (x)

∂2u (x, t)

∂x2
+ ϕ (x)u (x, t) = τ (x, t) , (7)

where (x, t) ∈ [0, 1]× [0, T ], with the initial conditions

∂ku

∂tk
(x, 0) = fk (x) , k = 0, 1, ...,m− 1, (8)

and the boundary conditions

u (0, t) = g0 (t) , u (1, t) = g1 (t) , t ≥ 0, (9)

where fk, k = 0, 1, ...,m− 1, τ, g0, g1, η, γ and ϕ are known functions and T > 0 is
a real number. In this part of the study, we achieve the solution method to solve
problem (7)-(9).

The Laplace transform of the Caputo-Fabrizio fractional derivative is satisfied as

L
{
CF
0 Dα+n

t u (x, t)
}
=
sn+1L{u (x, t)} − snu (x, 0)− sn−1u′ (x, 0)− · · · − u(n) (x, 0)

s+ α (1− s) .

(10)

In Eq. (10), s ≥ 0 and let we define the L{u (x, t)} (s) = χ (x, s) for Eq. (7), then
we can write

χ (x, s) =
(
α(s−1)−s
sn+1

) [
η (x) ∂

∂x + γ (x) ∂2

∂x2 + ϕ (x)
]
χ (x, s)

+ 1
sn+1

[
snu0 (x) + sn−1u1 (x) + · · ·+ un (x)

]
+ s+α(1−s)

sn+1 τ̃ (x, s) .
(11)

Then we get the homotopy for Eq. (11) as:

χ (x, s) = z
(
α(s−1)−s
sn+1

) [
η (x) ∂

∂x + γ (x) ∂2

∂x2 + ϕ (x)
]
χ (x, s)

+ 1
sn+1

[
snu0 (x) + sn−1u1 (x) + · · ·+ un (x)

]
+ s+α(1−s)

sn+1 τ̃ (x, s) ,
(12)

where χ (x, s) = L{u (x, t)} and τ̃ (x, s) = L{τ (x, t)} . Also taking the LTs of the
boundary conditions we have:

χ (0, s) = L{g0 (t)} , χ (1, s) = L{g1 (t)} , s ≥ 0. (13)

Then we obtain the solution

χ (x, s) =

∞∑
m=0

zmχm (x, s) , m = 0, 1, 2, . . . . (14)

Substituting the Eq. (14) in Eq. (12), we get∑∞
m=0 z

mχm (x, s)

= z
(
α(s−1)−s
sn+1

) [
η (x) ∂

∂x + γ (x) ∂2

∂x2 + ϕ (x)
]∑∞

m=0 z
mχm (x, s)

+ 1
sn+1

[
snu0 (x) + sn−1u1 (x) + · · ·+ un (x)

]
+ s+α(1−s)

sn+1 τ̃ (x, s) .
(15)
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As the last step, we have the following homotopies:

z0 : χ0 (x, s) = 1
sn+1

(
snu0 (x) + sn−1u1 (x) + · · ·+ un (x)

)
+
(
s+α(1−s)
sn+1

)
τ̃ (x, s) ,

z1 : χ1 (x, s) = −
(
s+α(1−s)
sn+1

) [
η (x) ∂

∂x + γ (x) ∂2

∂x2 + ϕ (x)
]
χ0 (x, s) ,

z2 : χ2 (x, s) = −
(
s+α(1−s)
sn+1

) [
η (x) ∂

∂x + γ (x) ∂2

∂x2 + ϕ (x)
]
χ1 (x, s) ,

...

zn+1 : χn+1 (x, s) = −
(
s+α(1−s)
sn+1

) [
η (x) ∂

∂x + γ (x) ∂2

∂x2 + ϕ (x)
]
χn (x, s) .

(16)
Then the solution for the problem (7)-(9) is presented by the following sum

Hn (x, s) =

n∑
$=0

χ$ (x, s) . (17)

Using the inverse LT of Eq. (17), we obtain the approximate solution of Eq. (7),

uapprox (x, t) ∼= un (x, t) = L−1 {Hn (x, s)} . (18)

4. Solution method which is described with the ABO. Consider the men-
tioned problem with Eq. (7) with ABO in the clasiccal Caputo sense:

ABC
0 Dα

t u (x, t) + η (x)
∂u (x, t)

∂x
+ γ (x)

∂2u (x, t)

∂x2
+ ϕ (x)u (x, t) = τ (x, t) , (19)

with the same initial and boundary conditions as in Eqs. (8) and (9), respectively.
By using the LT of the ABO as we defined in Eq. (6), we can obtain

L
{
ABC
0 Dα

t u (x, t)
}

=
B (α)

α+ sα (1− α)
(sαL{u (x, t)} − sα−1u (x, 0)), s > 0. (20)

We use the fact that defined previous L{u (x, t)} (s) = χ (x, s) for Eq. (19), so we
can see

χ (x, s) = −
(

(1−α)sα+α
sα

) [
η (x) ∂

∂x + γ (x) ∂2

∂x2 + ϕ (x)
]
χ (x, s)

+ 1
sα

[
sα−1u0 (x)

]
+
(

(1−α)sα+α
sα

)
τ̃ (x, s) .

(21)

Now we can construct the homotopy for Eq. (21) as follows:

χ (x, s) = −z
(

(1−α)sα+α
sα

) [
η (x) ∂

∂x + γ (x) ∂2

∂x2 + ϕ (x)
]
χ (x, s)

+ 1
sα

[
sα−1u0 (x)

]
+
(

(1−α)sα+α
sα

)
τ̃ (x, s) .

(22)

Then we can solve Eq. (22) with the following sum:

χ (x, s) =

∞∑
m=0

zmχm (x, s) , m = 0, 1, 2, . . . . (23)

Substituting the Eq. (23) in Eq. (22), we have∑∞
m=0 z

mχm (x, s)

= −z
(

(1−α)sα+α
sα

) [
η (x) ∂

∂x + γ (x) ∂2

∂x2 + ϕ (x)
]∑∞

m=0 z
mχm (x, s)

+ 1
sα

[
sα−1u0 (x)

]
+
(

(1−α)sα+α
sα

)
τ̃ (x, s) .

(24)
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The homotopies are obtained in the similar way:

z0 : χ0 (x, s) = 1
sα

[
sα−1u0 (x)

]
+
(

(1−α)sα+α
sα

)
τ̃ (x, s) ,

z1 : χ1 (x, s) = −
(

(1−α)sα+α
sα

) [
η (x) ∂

∂x + γ (x) ∂2

∂x2 + ϕ (x)
]
χ0 (x, s) ,

z2 : χ2 (x, s) = −
(

(1−α)sα+α
sα

) [
η (x) ∂

∂x + γ (x) ∂2

∂x2 + ϕ (x)
]
χ1 (x, s) ,

...

zn+1 : χn+1 (x, s) = −
(

(1−α)sα+α
sα

) [
η (x) ∂

∂x + γ (x) ∂2

∂x2 + ϕ (x)
]
χn (x, s) .

(25)
When z → 1, we see that Eq. (25) gives the approximate solution for the problem
(19) and the wanted solution can be obtained as

Hn (x, s) =

n∑
$=0

χ$ (x, s) . (26)

By applying the inverse LT of Eq. (26), we obtain the approximate solution of Eq.
(19),

uapprox (x, t) ∼= un (x, t) = L−1 {Hn (x, s)} . (27)

As the last work, we determine the stability situation of the solution by applying
the proposed method to some illustrative examples. If we consider un (x, t) =
L−1 {Hn (x, s)} , that is the nth partial sum in Eq. (27), the inaccuracy rate ER (%)
is evaluated as:

ER (%) =

∣∣∣∣un (x, t)− uexact (x, t)

uexact (x, t)

∣∣∣∣× 100. (28)

5. Numerical examples. In this subsection of the paper, we discuss the proposed
method via the CFO and ABO senses.

5.1. Example. Consider the following well-known Burgers equation of fractional
order [21]

∂αu

∂tα
+
∂u

∂x
− ∂2u

∂x2
=

2t2−α

Γ (3− α)
+ 2(x− 1), t > 0, x ∈ R, 0 < α ≤ 1, (29)

with the initial condition

u (x, 0) = x2. (30)

Firstly, we apply the Laplace homotopy method in Caputo-Fabrizio sense to the
problem (29)-(30).

τ̃ (x, s) = L{τ (x, t)} = L
{

2t2−α

Γ (3− α)
+ 2x− 2

}
=

2

s3−α +
2x− 2

s
,

Now we get the following recurrence relations:

z0 : χ0 (x, s) = 1
su (x, 0) +

(
s+α(1−s)

s

) (
2

s3−α + 2x−2
s

)
= x2

s + 2
s3−α + 2α(1−s)

s4−α + 2x−2
s + 2(x−1)α(1−s)

s2 ,
(31)

z1 : χ1 (x, s) =
(
s+α(1−s)

s

) [
∂2χ0(x,s)

∂x2 − ∂χ0(x,s)
∂x

]
= −2

(
(s+α(1−s))(xs+α(1−s))

s3

)
,
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z2 : χ2 (x, s) =
(
s+α(1−s)

s

) [
∂2χ1(x,s)

∂x2 − ∂χ1(x,s)
∂x

]
= 2 (s+α(1−s))2

s3 ,

...

From the last iterations, we have

Hn (x, s) =
∑n
$=0 χ$ (x, s)

= x2

s + 2
s3−α + 2α(1−s)

s4−α + 2x−2
s + 2(x−1)α(1−s)

s2

− 2
(

(s+α(1−s))(xs+α(1−s))
s3

)
+ 2 (s+α(1−s))2

s3 .

(32)

Taking the inverse LT of Eq. (32), the approximate solution of (29)-(30) is presented
as:

u (x, t) ≈ un (x, t) = L−1 {Hn (x, s)}
= x2 + 2t2−α

(
αt

Γ(4−α) + 1−α
Γ(3−α)

)
.

(33)

For the special case α = 1, the exact solution is given by u (x, t) = x2 + t2.
The following Figure (1) and Figure (2) show the numerical computations of Eq.

(33) in the CFO and ABO sense, respectively.

Figure 1. The solution function of (29) in the CFO sense for
x = 0.5 (left) and x = 1 (right).

Secondly, we solve the problem (29)-(30) by using the Laplace homotopy method
in the Atangana-Baleanu sense.

τ̃ (x, s) = L{τ (x, t)} = L
{

2t2−α

Γ (3− α)
+ 2x− 2

}
=

2

s3−α +
2x− 2

s
,

Then we can write the followings:

z0 : χ0 (x, s) = 1
su (x, 0) +

(
(1−α)sα+α

sα

) (
2

s3−α + 2x−2
s

)
= x2

s + 2
(

(1−α)sα+α
sα

) (
1

s3−α + x−1
s

)
,

(34)

z1 : χ1 (x, s) =
(

(1−α)sα+α
sα

) [
∂2χ0(x,s)

∂x2 − ∂χ0(x,s)
∂x

]
= 2

(
(1−α)sα+α

sα+1

)(
1− x− (1−α)sα+α

sα

)
,
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z2 : χ2 (x, s) =
(

(1−α)sα+α
sα

) [
∂2χ1(x,s)

∂x2 − ∂χ1(x,s)
∂x

]
= 2

s

(
(1−α)sα+α

sα

)2

,

...

By using the above iterations, we have

Hn (x, s) =
∑n
$=0 χ$ (x, s)

= x2

s + 2
(

(1−α)sα+α
s3

)
.

(35)

Taking the inverse LT of Eq. (35), we get the approximate solution of (29)-(30) as
follows:

u (x, t) ≈ un (x, t) = L−1 {Hn (x, s)}
= x2 + t2−α

(
αtαΓ(3−α)−2α+2

Γ(3−α)

)
.

(36)

For the special case α = 1, the exact solution is offered by u (x, t) = x2 +t2 which
is in settlement with the result in the CFO sense.

Figure 2. The solution function of (29) in the ABO sense for
x = 0.5 (left) and x = 1 (right).

5.2. Example. We take the following time-fractional PDE

∂αu

∂tα
=
∂2u

∂x2
+ x

∂u

∂x
+ u, t > 0, x ∈ R, 0 < α ≤ 1, (37)

subject to the initial condition
u (x, 0) = x, (38)

and the boundary conditions

ux (x, 0) = 1, u (0, t) = 0. (39)

Let apply the LHTM in the Caputo-Fabrizio sense to the problem:
Because the equation is homogeneous, τ̃ (x, s) = L{τ (x, t)} = 0.
As the second step of CF derivative, the homotopies can be given as:

z0 : χ0 (x, s) =
1

s
u (x, 0) =

x

s
, (40)

z1 : χ1 (x, s) =
(
s+α(1−s)

s

) [
∂2χ0(x,s)

∂x2 + x∂χ0(x,s)
∂x + χ0 (x, s)

]
= 2x(s+α(1−s))

s2 ,
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z2 : χ2 (x, s) =
(
s+α(1−s)

s

) [
∂2χ1(x,s)

∂x2 + x∂χ1(x,s)
∂x + χ1 (x, s)

]
= 4x(s+α(1−s))2

s3 ,

...

zn+1 : χn+1 (x, s) =
(
s+α(1−s)

s

) [
∂2χn(x,s)

∂x2 + x∂χn(x,s)
∂x + χn (x, s)

]
= 2n+1x(s+α(1−s))n+1

sn+2 ,

So, the approximate solution is

Hn (x, s) =
∑n
$=0 χ$ (x, s)

= x
s + x

∑n
$=1

2$(s+α(1−s))$
s$+1 .

(41)

If we consider the inverse LT of Eq. (41) and, when n→∞ we get the approximate
solution of problem (37)-(39) as follows:

u (x, t) ≈ un (x, t) = L−1 {Hn (x, s)}
= xe

2αt
2α−1

2α−1 .
(42)

For the special case α = 1, the exact solution is given by u (x, t) = xe2t.
The following Figure (3) shows the LHTM solution of Eq. (37) with the condi-

tions (38)-(39) in the Caputo-Fabrizio sense for various values of α and t.

Figure 3. The solution of Eq. (37) in the CFO sense for various
values of α.

Now, we apply the LHTM in the ABO sense to the problem (37)-(39):
Similarly, we set the homotopies of the series with respect to the ABO as:

z0 : χ0 (x, s) =
1

s
u (x, 0) =

x

s
, (43)

z1 : χ1 (x, s) =
(

(1−α)sα+α
sα

) [
∂2χ0(x,s)

∂x2 + x∂χ0(x,s)
∂x + χ0 (x, s)

]
= 2x

s

(
(1−α)sα+α

sα

)
,
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z2 : χ2 (x, s) =
(

(1−α)sα+α
sα

) [
∂2χ1(x,s)

∂x2 + x∂χ1(x,s)
∂x + χ1 (x, s)

]
= 4x

s

(
(1−α)sα+α

sα

)2

,

...

zn+1 : χn+1 (x, s) =
(

(1−α)sα+α
sα

) [
∂2χn(x,s)

∂x2 + x∂χn(x,s)
∂x + χn (x, s)

]
= 2n+1x

s

(
(1−α)sα+α

sα

)n+1

,

After that, we have the following sum

Hn (x, s) =
∑n
$=0 χ$ (x, s)

= x
s + x

s

∑n
$=1

(
2((1−α)sα+α)

sα

)$
.

(44)

Getting the inverse LT for Eq. (44), we have the approximate solution of (37)-(39)
as:

u (x, t) ≈ un (x, t) = L−1 {Hn (x, s)}

= x+ 2x
(

1− α+ αtα

Γ(α+1)

)
+ 4x

(
(α− 1)

2 − 2tαα(α−1)
Γ(α+1) + t2αα2

Γ(2α+1)

)
+

8x(−3t2αα2(α−1)Γ(3α+1)+Γ(2α+1)(t3αα3−(α−1)3Γ(3α+1)))
Γ(2α+1)Γ(3α+1)

+ 24xtαα(α−1)2

Γ(α+1) + · · ·

= x
2α−1Eα

(
2αtα

2α−1

)
.

(45)
where Eα(z) is the Mittag-Leffler function in one parameter. In Eq. (45) if we use
the special case α = 1, the exact solution of the problem is given by u (x, t) = xe2t.

In Figure (4), we present the graphs of Eq. (45) in the ABO sense for various
values of α, x, and t.

Figure 4. The solution function of (45) in the ABO sense for
various values of α = 0.7 (left) and α = 0.9 (right).
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6. Stability and convergence analysis of the mentioned method. In this
subsection of the study, we analyze the convergence and the stability of the method.
If the series (17) and (26) converge where χ (x, s) is occurred by Eq. (14) and Eq.
(23), they have to be the solutions of Eq. (7) and Eq. (19), respectively. Besides,
the solution results declare that the mentioned method is stable. Our suggested
method provides a good convergence area of the solution by generative functions
(15) and (22). Furthermore the approximate results get with the homotopy are
good agreement with the accurate solutions. In order to verify the convergent and
stability of the proposed method defined in Sects. (3) and (4), the error rates
ER (%) are obtained for some values of space variable x and time variable t. In
Figure (5), we compare the numerical solution in Eq. (41), for n = 10, with the
exact solution.

Figure 5. Inaccuracy rates ER (%) of the mentioned method

Concluding remarks. Two newly defined fractional operators with respect to
the exponential and the GML functions have been used in this paper to obtain the
solutions of FPDEs with the LHTM. Two illustrative problems have been solved
numerically-approximately and the results have been presented for different values of
the fractional parameter α. Besides the convergence and stability analysis have been
constructed of the model. The results obtained in this study show that the suggested
method has a good stability and they have verified the validity and effectiveness of
the LHTM in both the CFO and ABO senses.
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