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Abstract
This paper concerns with the geometric study of fixed points of a self-mapping on a
metric space. We establish new generalized contractive conditions which ensure that
a self-mapping has a fixed disc or a fixed circle. We introduce the notion of a best
proximity circle and explore some proximal contractions for a non-self-mapping as an
application. Necessary illustrative examples are presented to highlight the importance
of the obtained results.

Keywords Fixed disc · Pata Zamfirescu type x0-mapping · Proximity point ·
Proximity circle
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1 Introduction andMotivation

Fixed-point theory has an important role due to solutions of the equation T x = x where
T is a self-mapping on a metric (resp. some generalized metric) space. This theory
has been extensively studied with various applications in diverse research areas such
as integral equations, differential equations, engineering, statistics, and economics.
Some questions have been arisen for the existence and uniqueness of fixed points.
Some fixed-point problems are as follows:

(1) Is there always a solution of the equation T x = x?
(2) What are the existence conditions for a fixed point of a self-mapping?
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(3) What are the uniqueness conditions if there is a fixed point of a self-mapping?
(4) Can the number of fixed points be more than one?
(5) If the number of fixed points is more than one, is there a geometric interpretation

of these points?

Considering the above questions,many researchers have been studied onfixed-point
theory with different aspects.

Some generalized contractive conditions have been investigated to guarantee the
existence and uniqueness of a fixed point of a self-mapping. For example, in [22], an
existence theorem was given for a generalized contraction mapping. In [16], a refine-
ment of the classical Banach contraction principle was obtained. A new generalization
of these results was derived by using both of the above contractive conditions in [3].
In [2], a survey of various variants of fixed point results for single- and multivalued
mappings under the Pata-type conditions was given (for more results, see [3–5,17]
and the references therein).

In the cases in which the fixed-point equation T x = x has no solution, the notion
of “best proximity point” has been appeared as an approximate solution x such that
the error d (x, T x) is minimum. For example, the existence of best proximity point
was investigated using the Pata-type proximal mappings in [3]. These results are the
generalizations of ones obtained in [16]. In [17], some generalized best proximity point
and optimal coincidence point results were proved for new Pata-type contractions.

If a fixed point is not unique, then the geometry of the fixed points of a self-
mapping is an attractive problem. For this purpose, a recent approach called “fixed-
circle problem” (resp. “fixed-disc problem” ) has been studied by various techniques
(see [1,6–15,18–21] and the references therein). For example, in [10], some fixed-disc
results have been obtained using the set of simulation functions on a metric space.

In this paper, mainly, we focus on the geometric study of fixed points of a self-
mapping on a metric space. New generalized contractive conditions are established
for a self-mapping to have a fixed disc or a fixed circle with some illustrative examples.
As an application, we introduce the notion of a best proximity circle and explore some
proximal contractions for a non-self-mapping.

2 Main Results

Throughout the section, we assume that (X , d) is a metric space, T : X → X is a
self-mapping and D[x0, r ] is a disc defined as

D[x0, r ] = {u ∈ X : d(u, x0) ≤ r} .

If the self-mapping T fixes all of the points in the disc D[x0, r ], that is, Tu = u
for all u ∈ D[x0, r ], then D[x0, r ] is called as the fixed disc of T (see [10,20] and the
references therein).

To obtain new fixed-disc results, we modify the notion of a Zamfirescu mapping
on metric spaces (see [22] for more details).
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Definition 2.1 The self-mapping T is called a Zamfirescu type x0 -mapping if there
exist x0 ∈ X and a, b ∈ [0, 1) such that

d(Tu, u) > 0 �⇒ d(Tu, u) ≤ max

{
ad(u, x0),

b

2
[d(T x0, u) + d(Tu, x0)]

}
,

for all u ∈ X .

Proposition 2.2 If T is a Zamfirescu type x0-mapping with x0 ∈ X, then we have
T x0 = x0.

Proof Let T be a Zamfirescu type x0-mapping with x0 ∈ X . Assume that T x0 �= x0.
Then, we have d(T x0, x0) > 0 and using the Zamfirescu type x0-mapping hypothesis,
we get

d(T x0, x0) ≤ max

{
ad(x0, x0),

b

2
[d(T x0, x0) + d(T x0, x0)]

}

= max {0, bd(T x0, x0)} = bd(T x0, x0),

a contradiction because of b ∈ [0, 1). Consequently, T fixes the point x0 ∈ X , that is,
T x0 = x0. �	

Let the number r be defined as follows:

r = inf {d(Tu, u): Tu �= u, u ∈ X} . (2.1)

Theorem 2.3 If T is a Zamfirescu type x0-mapping with x0 ∈ X and d(Tu, x0) ≤ r
for each u ∈ D(x0, r) − {x0}, then D[x0, r ] is a fixed disc of T .

Proof Suppose that r = 0. Then, we get D[x0, r ] = {x0}. By Proposition 2.2, we have
T x0 = x0 whence D[x0, r ] is a fixed disc of T .

Now assume that r > 0 and u ∈ D[x0, r ] − {x0} is any point such that Tu �= u.
Then, we have d(Tu, u) > 0. Using the Zamfirescu type x0-mapping property, the
hypothesis d(Tu, x0) ≤ r and Proposition 2.2, we get

d(Tu, u) ≤ max

{
ad(u, x0),

b

2
[d(T x0, u) + d(Tu, x0)]

}

≤ max {ar , br} . (2.2)

Without loss of generality we can assume a ≥ b. Then, using the inequality (2.2), we
obtain

d(Tu, u) ≤ ar ,

which is a contradiction with the definition of r because of a ∈ [0, 1). Consequently,
it should be Tu = u and so D[x0, r ] is a fixed disc of T . �	

123



N. Özgür, N. Taş

From now on, � denotes the class of all increasing functions Ψ : [0, 1] → [0,∞)

with Ψ (0) = 0. Modifying the notion of a Pata-type contraction (see [16]) and using
this class �, we give the following definition that exclude the continuity hypothesis
on Ψ .

Definition 2.4 Let � ≥ 0, α ≥ 1 and β ∈ [0, α] be any constants. Then, T is called a
Pata type x0-mapping if there exist x0 ∈ X and Ψ ∈ � such that

d(Tu, u) > 0 �⇒ d(Tu, u) ≤ 1 − ε

2
‖u‖ + �εαΨ (ε) [1 + ‖u‖ + ‖Tu‖]β ,

for all u ∈ X and each ε ∈ [0, 1], where ‖u‖ = d(u, x0).

Proposition 2.5 If T is a Pata type x0-mapping with x0 ∈ X, then we have T x0 = x0.

Proof Let T be a Pata type x0-mapping with x0 ∈ X . Assume that T x0 �= x0. Then,
we have d(T x0, x0) > 0. Using the Pata type x0-mapping hypothesis, we get

d(T x0, x0) ≤ 1 − ε

2
‖x0‖ + �εαΨ (ε) [1 + ‖x0‖ + ‖T x0‖]β

= 1 − ε

2
d(x0, x0) + �εαΨ (ε) [1 + d(x0, x0) + d(T x0, x0)]

β

= �εαΨ (ε) [1 + d(T x0, x0)]
β . (2.3)

For ε = 0, using the inequality (2.3), we obtain

d(T x0, x0) ≤ 0,

whence it should be T x0 = x0. �	
Theorem 2.6 If T is a Pata type x0-mapping with x0 ∈ X, then D[x0, r ] is a fixed disc
of T .

Proof Suppose that r = 0. Then, we get D[x0, r ] = {x0}. By Proposition 2.5, we
have T x0 = x0 whence D[x0, r ] is a fixed disc of T . Now assume that r > 0 and
u ∈ D[x0, r ] − {x0} is any point such that Tu �= u. Then, we have d(Tu, u) > 0.
Using the Pata type x0-mapping property, we get

d(Tu, u) ≤ 1 − ε

2
‖u‖ + �εαΨ (ε) [1 + ‖u‖ + ‖Tu‖]β . (2.4)

For ε = 0, using the inequality (2.4), we obtain

d(Tu, u) ≤ ‖u‖
2

= d(u, x0)

2
≤ r

2
,

a contradiction with the definition of r . Consequently, it should be Tu = u, that is,
D[x0, r ] is a fixed disc of T . �	
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Combining the notions of a Zamfirescu type x0-mapping and of a Pata type
x0-mapping, we define the following notion inspiring the concept of a Pata-type Zam-
firescu mapping [3].

Definition 2.7 If there exist x0 ∈ X and Ψ ∈ � such that

d(Tu, u) > 0 �⇒ d(Tu, u) ≤ 1 − ε

2
M(u, x0) +

�εαΨ (ε) [1 + ‖u‖ + ‖Tu‖ + ‖T x0‖]β ,

for all u ∈ X and each ε ∈ [0, 1], where ‖u‖ = d(u, x0), � ≥ 0, α ≥ 1, β ∈ [0, α]
are constants and

M(u, v) = max

{
d(u, v),

d(Tu, u) + d(T v, v)

2
,
d(T v, u) + d(Tu, v)

2

}
,

then T is called a Pata Zamfirescu type x0-mapping with respect to Ψ ∈ �.

Now we compare a Zamfirescu type x0-mapping and a Pata Zamfirescu type x0-
mapping. Let γ = max {a, b} in Definition 2.1 and let us consider the Bernoulli’s
inequality 1 + r t ≤ (1 + t)r , r ≥ 1 and t ∈ [−1,∞). Then, we have

d(Tu, u) > 0 �⇒ d(Tu, u) ≤ max

{
ad(u, x0),

b

2
[d(T x0, u) + d(Tu, x0)]

}

≤ γ max

{
d(u, x0),

d(T x0, u) + d(Tu, x0)

2

}

≤ γ max

{
d(u, x0),

d(Tu, u) + d(T x0, x0)

2
,
d(T x0, u) + d(Tu, x0)

2

}

≤ 1 − ε

2
max

{
d(u, x0),

d(Tu, u) + d(T x0, x0)

2
,
d(T x0, u) + d(Tu, x0)

2

}

+
(

γ + ε − 1

2

) [
1 + max

{
‖u‖ ,

‖u‖ + ‖Tu‖ + ‖T x0‖
2

}]

≤ 1 − ε

2
max

{
d(u, x0),

d(Tu, u) + d(T x0, x0)

2
,
d(T x0, u) + d(Tu, x0)

2

}

+ γ

(
1 + ε − 1

γ

)
[1 + ‖u‖ + ‖Tu‖ + ‖T x0‖]

≤ 1 − ε

2
M(u, x0) + γ ε

1
γ [1 + ‖u‖ + ‖Tu‖ + ‖T x0‖]

≤ 1 − ε

2
M(u, x0) + γ εε

1−γ
γ [1 + ‖u‖ + ‖Tu‖ + ‖T x0‖] .

Consequently, we obtain that a Zamfirescu type x0-mapping is a special case of a Pata

Zamfirescu type x0-mapping with � = γ , Ψ (u) = u
1−γ
γ and α = β = 1.

In the following proposition, we see that the point x0 in the notion of a Pata Zam-
firescu type x0-mapping is a fixed point of a self-mapping T .
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Proposition 2.8 If T is a Pata Zamfirescu type x0-mapping with respect to Ψ ∈ � for
x0 ∈ X, then we have T x0 = x0.

Proof Let T be a Pata Zamfirescu type x0-mapping with respect toΨ ∈ � for x0 ∈ X .
Suppose that T x0 �= x0. Then, we have d(T x0, x0) > 0. Using the Pata Zamfirescu
type x0-mapping hypothesis, we obtain

d(T x0, x0) ≤ 1 − ε

2
M(x0, x0) + �εαΨ (ε) [1 + ‖x0‖ + 2 ‖T x0‖]β

= 1 − ε

2
d(T x0, x0) + �εαΨ (ε) [1 + ‖x0‖ + 2 ‖T x0‖]β . (2.5)

For ε = 0, using the inequality (2.5), we get

d(T x0, x0) ≤ d(T x0, x0)

2
,

a contradiction. Hence, it should be T x0 = x0. �	
Using Proposition 2.8, we give the following fixed-disc theorem.

Theorem 2.9 If T is a Pata Zamfirescu type x0-mapping with respect to Ψ ∈ � for
x0 ∈ X and d(Tu, x0) ≤ r for each u ∈ D[x0, r ] − {x0}, then D[x0, r ] is a fixed disc
of T .

Proof Suppose that r = 0. Then, we get D[x0, r ] = {x0}. By Proposition 2.8, we
have T x0 = x0 whence D[x0, r ] is a fixed disc of T . Now assume that r > 0 and
u ∈ D[x0, r ] − {x0} is any point such that Tu �= u. Then, we have d(Tu, u) > 0.
Using the Pata Zamfirescu type x0-mapping property, the hypothesis d(Tu, x0) ≤ r
and Proposition 2.8, we obtain

d(Tu, u) ≤ 1 − ε

2
M(u, x0) + �εαΨ (ε) [1 + ‖u‖ + ‖Tu‖ + ‖T x0‖]β

= 1 − ε

2
max

{
d(u, x0),

d(Tu, u) + d(T x0, x0)

2
,
d(T x0, u) + d(Tu, x0)

2

}

+�εαΨ (ε) [1 + ‖u‖ + ‖Tu‖ + ‖T x0‖]β

≤ 1 − ε

2
max

{
r ,

d(Tu, u)

2
, r

}

+�εαΨ (ε) [1 + ‖u‖ + ‖Tu‖ + ‖T x0‖]β . (2.6)

For ε = 0, using the inequality (2.6), we get

d(Tu, u) ≤ 1

2
max

{
r ,

d(Tu, u)

2

}
.

Hence, we get two cases as follows:
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Case 1 If max
{
r , d(Tu,u)

2

}
= r , then we have

d(Tu, u) ≤ r

2
,

a contradiction with the definition of r .
Case 2 If max

{
r , d(Tu,u)

2

}
= d(Tu,u)

2 , then we find

d(Tu, u) ≤ d(Tu, u)

2
,

a contradiction.
Consequently, it should be Tu = u and so T fixes the disc D[x0, r ]. �	
We give some illustrative examples to show the validity of our obtained results.

Example 2.10 Let X = R be the usual metric space with the metric d(u, v) = |u − v|
for all u, v ∈ R. Let us define the self-mapping T : R → R as

Tu =
{
u if u ∈ [−4, 4]
u + 1 if u ∈ (−∞,−4) ∪ (4,∞)

,

for all u ∈ R. Then,
• The self-mapping T is a Zamfirescu type x0-mapping with x0 = 0, a = 1

2 and
b = 0. Indeed, we get

d(Tu, u) = 1 > 0,

for all u ∈ (−∞,−4) ∪ (4,∞). Hence, we find

d(Tu, u) = 1 ≤ |u|
2

= max

{
ad(u, 0),

b

2
[d(0, u) + d(u + 1, 0)]

}
.

• The self-mapping T is a Pata type x0-mapping with x0 = 0, � = α = β = 1
and

Ψ (u) =
{
0 if u = 0
1
2 if u ∈ (0, 1] .

Indeed, we have

d(Tu, u) = 1 > 0,

for all u ∈ (−∞,−4) ∪ (4,∞). So we obtain

d(Tu, u) = 1 ≤ |u|
2

+ ε

2
+ ε |u + 1|

2

= 1 − ε

2
‖u‖ + �εαΨ (ε) [1 + ‖u‖ + ‖Tu‖]β .
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• The self-mapping T is a Pata Zamfirescu type x0-mapping with x0 = 0, � =
α = β = 1 and

Ψ (u) =
{
0 if u = 0
1
2 if u ∈ (0, 1] .

Indeed, we get

d(Tu, u) = 1 > 0,

for all u ∈ (−∞,−4) ∪ (4,∞) and

M(u, 0) = max

{
|u| , 1

2
,
|u| + |u + 1|

2

}
= max

{
|u| , |u| + |u + 1|

2

}
.

Then, we obtain two cases:
Case 1 Let |u| >

|u|+|u+1|
2 . We find M(u, 0) = |u| and

d(Tu, u) = 1 ≤ |u|
2

+ ε

2
+ ε |u + 1|

2

= 1 − ε

2
M(u, 0) + �εαΨ (ε) [1 + ‖u‖ + ‖Tu‖ + ‖T 0‖]β .

Case 2 Let |u| <
|u|+|u+1|

2 . We obtain M(u, 0) = |u|+|u+1|
2 and

d(Tu, u) = 1 ≤ |u|
4

+ ε |u|
2

+ |u + 1|
4

+ ε |u + 1|
2

+ ε

2

= 1 − ε

2
M(u, 0) + �εαΨ (ε) [1 + ‖u‖ + ‖Tu‖ + ‖T 0‖]β .

Also, we find

r = inf {d(Tu, u): Tu �= u, u ∈ X} = 1

and

d(Tu, 0) = d(u, 0) ≤ 1,

for all u ∈ D[0, 1] − {0}. Consequently, from Theorem 2.3 (resp. Theorems 2.6 and
2.9), T fixes the disc D[0, 1].
Example 2.11 Let X = [0, 1] be the usual metric space. Let us define the self-mapping
T : X → X as

Tu =
{
u if u ∈ {0, 1}
2u if u ∈ (0, 1)

,
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for all u ∈ X . Then, T is a Zamfirescu type x0-mapping with x0 = 0, a = 0 and
b = 2

3 , but T is not a Zamfirescu type x0-mapping with x0 = 1. Also we get r = 0
and so T fixes the point x0 = 0.

Example 2.12 Let X = R be the usual metric space. Let us define the self-mapping
T :R → R as

Tu =
{
u if u ∈ [−2,∞)

u + 1 if u ∈ (−∞,−2)
,

for all u ∈ R. Then, T is a Zamfirescu type x0-mapping with a = 1
2 , b = 0, both

x0 = 0 and x0 = 5. We obtain r = 1 whence by Theorem 2.3 T fixes both of the discs
D[0, 1] and D[5, 1].

Example 2.13 Let X = R be the usual metric space. Let us define the self-mapping
T :R → R as

Tu =
{
u if u ∈ [−1, 1]
0 if u ∈ (−∞,−1) ∪ (1,∞)

,

for all u ∈ R. Then, we have r = 1 and T is not a Zamfirescu type x0-mapping ( resp.
a Pata type x0-mapping and a Pata Zamfirescu type x0-mapping) with any x0 ∈ X but
T fixes the disc D[0, 1].

Considering the above examples, we conclude the following remarks.

Remark 2.14 (1) The point x0 satisfying the definition of a Zamfirescu type x0-
mapping (resp. a Pata type x0-mapping and a Pata Zamfirescu type x0-mapping)
is a fixed point of the self-mapping T . But the converse statement is not always
true, that is, a fixed point of T does not always satisfy the definition of a Zam-
firescu type x0 -mapping (resp. a Pata type x0-mapping and a Pata Zamfirescu
type x0-mapping). For example, if we consider Example 2.11, then T fixes the
point x0 = 1, but the point 1 does not satisfy the definition of a Zamfirescu type
x0-mapping.

(2) The choice of x0 is independent from the number r (see Examples 2.10, 2.11 and
2.12).

(3) The radius r can be zero (see Example 2.11).
(4) The number of x0 satisfying the definition of a Zamfirescu type x0-mapping (resp.

a Pata type x0-mapping and a Pata Zamfirescu type x0-mapping) can be more than
one (see Example 2.12).

(5) The converse statements of Theorems 2.3, 2.6 and 2.9 are not always true (see
Example 2.13).

(6) The obtained fixed-disc results can be also considered as fixed-circle results (resp.
fixed-point results).
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3 A best proximity circle application

In this section, we define the notion of a best proximity circle on a metric space. At
first, we recall the definition of a best proximity point and some basic concepts. Let
A, B be two nonempty subsets of a metric space (X , d). We consider the following:

d (A, B) = inf {d(u, v): u ∈ A and v ∈ B} ,

A0 = {u ∈ A: d (u, v) = d (A, B) for some v ∈ B}

and

B0 = {v ∈ B: d (u, v) = d (A, B) for some u ∈ A} .

For a mapping T : A → B, the point u ∈ A is called a best proximity point of T if

d (u, Tu) = d (A, B) .

If T has more than one best proximity point, then it is an interesting problem to
consider the geometric properties of these points. For this purpose we define a circle
Cx0,r = {u ∈ A: d (u, x0) = r} as the best proximity circle of T if

d (u, Tu) = d (A, B) ,

for all u ∈ Cx0,r . We note that the best proximity circle becomes a fixed circle of T if
we take A = B = X (the circle Cx0,r is called as the fixed circle of the self-mapping
T : X → X if Tu = u for every u ∈ Cx0,r [12]). Also if Cx0,r has only one element,
then the best proximity circle becomes to a best proximity point or a fixed point of T .
Using this notion, we give an application to a Pata type x0-mapping.

Definition 3.1 Let (X , d) be a metric space and T : A → B be a mapping. Then, T is
called a Pata type proximal x0-contraction if there exist x0 ∈ A0 andΨ ∈ � such that

d(x, u) ≤ 1 − ε

2
d(x, x0) + �εαΨ (ε) [1 + ‖x‖ + ‖u‖]β ,

for all x ∈ A and each ε ∈ [0, 1], where u ∈ A with d(u, T x) = d(A, B), ‖x‖ =
d(x, x0) and � ≥ 0, α ≥ 1, β ∈ [0, α] are any constants.

Proposition 3.2 If T is a Pata type proximal x0-contraction with x0 ∈ A0 such that
T A0 ⊂ B0, then x0 is a best proximity point of T in A.

Proof Let x0 ∈ A0. Then, we have T x0 ∈ B0 because of T A0 ⊂ B0. Hence, there
exists u ∈ A such that

d(u, T x0) = d(A, B).
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Using the Pata type proximal x0-contractive property, we obtain

d(x0, u) ≤ 1 − ε

2
d(x0, x0) + �εαΨ (ε) [1 + ‖x0‖ + ‖u‖]β . (3.1)

For ε = 0, using the inequality (3.1), we get

d(x0, u) ≤ 0,

which implies x0 = u. Consequently, x0 is a best proximity point of T in A, that is,
d(x0, T x0) = d(A, B). �	

Theorem 3.3 Let μ = inf {d(x, u): x, u ∈ A such that x �= u}. If T is a Pata type
proximal x0-contraction with x0 ∈ A0 such that T A0 ⊂ B0 and Cx0,μ ⊂ A0, then
Cx0,μ is a best proximity circle of T .

Proof Let μ = 0. Then, we have Cx0,μ = {x0}. From Proposition 3.2, Cx0,μ is a best
proximity circle of T . Now suppose that μ > 0. Let x ∈ Cx0,μ be any point. Then,
using the hypothesis Cx0,μ ⊂ A0, we have x ∈ A0 and so T x ∈ B0. Hence, there
exists u ∈ A such that

d(u, T x) = d(A, B).

Using the Pata type proximal x0-contractive property, we obtain

d(x, u) ≤ 1 − ε

2
d(x, x0) + �εαΨ (ε) [1 + ‖x‖ + ‖u‖]β . (3.2)

For ε = 0, using the inequality (3.2), we get

d(x, u) ≤ 1

2
d(x, x0) = μ

2
≤ d(x, u)

2
,

which is a contradiction. It should be x = u. Consequently, Cx0,μ is a best proximity
circle of T . �	

Corollary 3.4 Let (X , d) be a metric space and T : X → X be a mapping which
satisfies the conditions of Definition 2.4. Then, T has a fixed circle Cx0,μ in X.

Proof The proof can be easily obtained from Theorem 3.3 taking A = B = X . In this
case, the definition of the number μ coincides with the definition of the number r . �	

Notice that Corollary 3.4 is a special case of Theorem 2.6. In fact, T fixes each of
the circles Cx0,ρ where ρ ≤ μ.

Finally, we give an example to Theorem 3.3 following [3].
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Example 3.5 Let A = {(0, a): a ∈ [0, 1]} and B = {(1, b): b ∈ [0, 1]} on R
2 with the

metric d: X × X → R defined as d(x, y) = |x1 − y1|+|x2 − y2| for all x = (x1, x2),
y = (y1, y2) ∈ R

2. Let us define the mapping T : A → B as

T (0, x) =
(
1,

2x

3

)
,

for all (0, x) ∈ A. Then, T is a Pata type proximal x0-contraction with x0 = (0, 0),
� = α = β = 1 and

Ψ (u) =
{
0 if u = 0
1
2 if u ∈ (0, 1] .

Indeed, we get d(A, B) = 1 and μ = 0. Now we show that T satisfies the Pata type
proximal x0-contractive property for all ε ∈ [0, 1].

Let ε = 0. For all (0, x) = x ′ ∈ A, we get

d(x ′, u) = d

(
(0, x) ,

(
0,

2x

3

))
= x

3
≤ x

2
= 1

2
d(x ′, x0),

where d(u, T x) = d(A, B) = 1.
Let ε ∈ (0, 1]. For all (0, x) = x ′ ∈ A, we get

d(x ′, u) = x

3

≤ x

2
+ ε

2

≤ 1 − ε

2
d(x ′, x0) + �εαΨ (ε)

[
1 + ∥∥x ′∥∥ + ‖u‖]β ,

where d(u, T x) = d(A, B) = 1.
Hence, T is a Pata type proximal x0-contraction and there exists a best proximity

circleCx0,μ = {(0, 0)} in A. Also the circleCx0,μ can be considered as a best proximity
point.

Acknowledgements The authors would like to thank the anonymous referee for her/his comments that
helped us improve this article.

References

1. Bisht, R.K., Özgür, N.: Geometric properties of discontinuous fixed point set of (ε − δ) contractions
and applications to neural networks. Aequ. Math. 94(5), 847–863 (2020)

2. Choudhury, B., Kadelburg, Z., Metiya, N., Radenović, S.: A survey of fixed point theorems under
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