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Abstract: Active and passive techniques are two different techniques with which to detect buried
explosives. In practice, the most preferred active method works by broadcasting a signal underground.
This signal may stimulate the buried explosive and cause it to explode. It is important to eliminate or
minimize this drawback to ensure the safety of the detector operator. In this respect, it is important
to increase the studies on the passive detection technique which is not currently used in practice.
The aim of this study was to passively detect improvised explosive devices without stimulating them,
and to classify underground objects as explosive or non-explosive. A fluxgate sensor array having
33 components was used for passive magnetic field measurements, and the nearest neighborhood
algorithm was preferred for classifying the resulting data. In experimental studies, 33 different
samples having different amounts of ferromagnetic properties were used. Successful imaging and
classification were achieved for the measurements up to 20 cm below the surface of soil. Data were
recorded as 32× 25 matrices, and then they were reduced to 32× 2 matrices having the same features.
Samples having explosive properties were distinguished from other underground objects with success
rates of 86% and 95% for 32 × 25 and 32 × 2 data matrices, respectively. Classification times for
32 × 25 and 32 × 2 data matrices were 42 ms and 3.62 ms, respectively. For data groups where
the best results were obtained for the data matrices, frame numbers classified in one second were
calculated as 23.80 and 276.2, respectively. False alarm rate achieved was 5.31%. The experimental
results proved the successes of the matrices reduction and classification approach. One of the most
common problems encountered in passive detecting techniques is that the sensor position affects the
measurements negatively. In this paper, a solution has been proposed for this important problem.

Keywords: underground object detection; magnetic field measurement; nearest neighbor searches;
remote sensing

1. Introduction

Systems being used to detect buried explosives (BE) should classify material as to whether it is an
explosive or not, and give an alert to the operator. Conversely, in order to increase the speed of the
system, ignorance of some data to be evaluated as an explosive can reduce reliability, and this may
cause some problems which will not be compensated for. The low false alarm rate (FAR) and fast
detection feature are two important parameters in BE and improvised explosive device (IED) detection
systems. High computational efficiency is required in the algorithm operated for optimum FAR
and fast detection features [1]. For reliable operation, the buried explosive detection (BED) system
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should be able to interpret as much data as possible and assist the operator in the decision-making
process [2]. IEDs randomly placed underground by illegal organizations have different properties from
the explosives used by armed forces for defense purposes. Traditional BED systems broadcast signals
underground while scanning the IEDs. If IEDs are buried with a circuit detecting the BED system’s
broadcast frequency, the presence of the BED system will cause the IED to explode. In order to prevent
such situations and IEDs from detonating, the detection method has to be passive; i.e., the BED system
should not broadcast a signal during its operation. Underground object detection hardware is used in
military applications, civil engineering, geological sciences, location sciences, archaeological researches,
health applications, biological researches, etc. The specific properties of the object to be detected are
important in the selection of the BED technique. If the object to be detected is an IED, many features
must be analyzed in the selection of the BED method. There are two basic BED techniques; namely, mass
analysis and trace analysis [3,4]. In the trace analysis technique, the remains of the explosive molecules
in the air or soil are analyzed. In the mass analysis technique, the explosive is detected visually. The
mass analysis technique is preferred more often for military purposes because it is faster. Ground
penetrating radar [5–13], electromagnetic induction [1,14,15], nuclear quadrupole resonance [4,16–18],
acoustic seismic [1,19–22], and neutron-based measurement [23–28] are the most important methods
using mass analysis technique. In all of these methods, an underground signal is broadcast and the
reflected signal from the buried object is evaluated by the BED system. The measurement made in
this way is an active measurement, and the broadcast signal may cause the BE or IED to explode, as
previously mentioned. It is possible to detect the underground explosives with a passive measurement
system without emitting a signal to the BE. BED by the magnetic anomaly (MA) method can be applied
in the following two ways:

(i) The BE is exposed to a high level, constant magnetic field, and measurements are made with
magnetic field measurement sensors over it. MA is detected, and the BE is interpreted by
means of the data obtained [29–32]. Since an external fixed magnetic field is applied to the BE,
the measurement made in this way is named an active measurement.

(ii) The natural magnetic field of the earth is used to detect BE. Magnetic field lines of the earth can
be considered linear for short distances. When an object is placed underground, deviations occur
in linear magnetic field lines. In other words, different anomalies occur in the region where the
object is buried compared to the region where the object is not buried. This measurement is a
passive technique, and BEs and IEDs can be detected by evaluating these anomalies [33–37].

In this study, the MA method was used to detect BE and IED having ferromagnetic contents with
passive measurements, and a scanning system was developed to image these objects. Magnetic
field scans of 33 different samples were made at different distances. A thirty-three component
fluxgate sensor array was used for magnetic field measurements, and data were collected by passive
measurements. The data collected were recorded in 32 × 25 dimensional matrices, and a k-nearest
neighborhood (kNN) classification study was performed. The sizes of the 32 × 25 dimensional data
matrices were reduced to 32 × 2, and these matrices were used for classification. Classification results
obtained with 32 × 25 and 32 × 2 dimensional matrices were compared with each other. One of the
most common problems encountered in passive detecting techniques is that the sensor position affects
the measurements negatively. Fluxgate or anisotropic magneto resistive (AMR) sensor arrays have
been integrated to three-axis motion systems in explosive and buried object detection studies with the
MA method in the literature, and data have been collected. Although the sensor arrays were moved
along the x, y, and z axes during the data acquisition phase, the positions of the sensors were not
changed [33–37]. However, even if there is no MA, changing the position of the sensor creates voltage
variations at the output of the sensors. In this case, it becomes difficult to determine whether the
change in the sensor output is due to a buried object or a change in the sensor position (present systems
get different results based on the positioning of the sensor). In this paper, a solution is presented with
circuit designed for this important problem.
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2. System Design

The experimental system consists of a sensor array and instrumentation circuit (SA and IC),
an analogue to digital converter (ADC), a three axis motion control system (TAMCS), data acquisition
and main control systems (DAQ and MCS), and a graphical user interface unit (GUIU). In the Figures 1
and 2, the basic diagram and the appearance of the BED system are shown, respectively.

Figure 1. Basic diagram of buried explosive detection (BED) system.

A fluxgate sensor named TE100 (Figure 3) is preferred for magnetic field measurements in SA and
IC system design. The TE100 fluxgate sensor contains appropriate parameters for measuring the earth’s
natural magnetic field strength. The natural magnetic field strength anywhere on the earth is between
25 and 65 micro Tesla (µT), and the measurement range of TE100 is ±100 µT. It generates differential
voltage from 1.5 V to 3.5 V depending on the magnitude of applied magnetic field. This voltage range
is ideal for working with microcontrollers or microprocessors. TE100 also has specifications of %
±0.3 µT accuracy, <2 nT/K zero shift, and 0 to 1 kHz (−3 dB) bandwidth. It is possible to change the
differential voltage of the TE100 output (+) and output (−) pins in two ways.

(i) Changing the magnetic field strength and field line angles around a fixed positioned TE100.
(ii) Moving the TE100 at different angles according to constant magnetic field lines.

If it is assumed that the designed passive measurement system is moved on a land surface, so it
is understood that it will not be possible to keep the direction of TE100s constant, and therefore
output voltages of the sensors will change continuously depending on their direction. It is difficult to
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determine whether these changes are due to a buried object-dependent anomaly or a change in the
position. Therefore, these changes, which are a function of the TE100 position, and which have noise
characteristics must be removed or minimized. In this study, a measuring circuit was developed to
minimize the noise caused by TE100’s position and to detect magnetic anomalies that only the buried
object generates.

Figure 2. Appearance of the BED system.

Figure 4 and Figure 5 show the basic diagram and the circuit schematic of the instrumentation
circuit we designed, respectively. It is known that the vectoral sum of the magnitudes of two magnetic
fields in the same axis but in different directions is zero. With this information, an aim was to produce
0 V in total for two TE100s placed in the same axis but in different directions. Using the circuit in
Figure 5 for each sensor, a sensor array consisting 33 pieces of TE100 was formed as shown in Figure 4.
Thus, using this sensor array, the BED system, shown in Figure 1, was designed. All these sensors
are in the same measurement axis, but only one TE100, to be used for reference sensor (Sref), is in the
opposite direction. In the absence of magnetic anomalies, the output of all TE100 channels is equal to
0 V. In the case of magnetic anomalies, the output voltages of TE100 channels change according to the
magnitude and intensity of the anomalies. Deviations in the voltages of the channels are due to the
MA and contain data about the buried object.

Two magnetic field sensors were placed in the same line with opposite directions in order to
produce voltages equal in magnitude but opposite in sign. As shown in Figure 5, the output signal of
the reference sensor is common for the 32 channel sensor array. In order to distribute this signal to all
channels without attenuation and noise, buffer amplifiers with a gain of 1 were preferred at the channel
inputs. Voltages of the buffer amplifier output and the OUT (+) output of the channel sensor are added
with each other by the resistors R1 and R2. The resistance values of R1 and R2 are equal. Thus, a signal
which is the half of the signal obtained by adding the OUT (+) outputs of the reference and channel
sensor arrives at the (+) input of the instrumentation amplifier. As a result of this, the unwanted signal
component arising from the Earth’s magnetic field in the signal is removed. Thus, a voltage of 1 V
for 50 µT is obtained regardless of the position of the sensor. However, this voltage is produced on a
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reference of 2.5 V. A differential amplification operation is performed in the instrumentation amplifier
to remove the effect of this reference voltage. At the OUT (−) output of the channel sensor, there is a
reference voltage of 2.5 V. The difference signal between the signal reaching the (+) input terminal of
the instrumentation and 2.5 V obtained from OUT (−) output of the channel sensor is amplified. This
signal is then passed through the first order, passive-low pass filter consisting of R3-C1 elements and
directed to the relevant ADC channel [38].

Figure 3. Appearance of the TE100 fluxgate sensor.

Figure 4. The basic diagram of the instrumentation circuit.



Appl. Sci. 2019, 9, 5415 6 of 18

Figure 5. The circuit schematic of instrumentation circuit only for one sensor channel.

The ADC module is used to digitize the analogue voltages obtained from the instrumentation
circuit. This module transfers digitized data to the DAQ and MCS. A 32-channel ADC network was
constructed using four ADC modules each having eight channels, and this network is controlled by
the DAQ and MCS. The TAMCS is a system designed to obtain data from the magnetic behavior
of the BE by moving the designed sensor array over the soil covering measurement area. DAQ and
MCS, together are a system that establishes communication between GUIU, SA and IC, and TAMCS.
Through DAQ and MCS, the commands from the computer are transferred to TAMCS, and the data
obtained from the SA and IC are transferred to the computer during magnetic field scans. A graphical
user interface (GUI) was designed for recording the magnetic field data in a certain format in the
classification stage, for sending the commands to control TAMCS, for starting/finishing BE scans,
and analyzing the graphics. The GUIU was developed using Matlab GUI. A screen appearance of the
GUIU is shown in Figure 6. The data collected in the GUIU were recorded in "txt" format, and have
been used as an example dataset for the classification.

Figure 6. Screen appearance of developed graphical user interface unit (GUIU).
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3. Pattern Recognition of Magnetic Field Data

Pattern recognition consists of two basic stages: feature extraction and classification.

3.1. Feature Extraction

In this phase; the size of the magnetic field data was reduced, descriptive properties were
determined, and normalization was applied. The feature extraction phase plays the most important
role in the system’s performance. In this study, the following features related to datasets were extracted.

* Maximum (Max): The element which has the greatest value in the dataset.
* Minimum (Min): The element which has the smallest value in the dataset.
* Standard deviation (σ): Criterion that is used to quantify the amount of dispersion of a dataset.

It is calculated by Equation (1).

σ =

√
∑n

i=1
(
xi − µ

)2

n
. (1)

In the Equation (1), xi is element "i" in the dataset, µis the mean value of the dataset, and n is
number of elemets in dataset.

* The Kurtosis Coefficient (KC): The sharpness of the peak of a frequency-distribution curve. It is
calculated by Equation (2).

KC =

√
∑n

i=1
(
xi − µ

)4

nσ4 . (2)

* The arithmetic mean (AM): The arithmetic mean of the numeric values in the dataset.

3.2. Classification Algorithm

kNN classification algorithm is preferred to classify explosive and non-explosive materials. In the
literature, it is clear that explosives can be detected by a kNN classification algorithm and significant
results have been obtained [37,39].

kNN is a simple and widely used classification method [40]. kNN is a non-parametric approach
that was widely applied to statistics in the early 1970s [41–43]. kNN is regarded as one of the
top 10 algorithms in data mining, due to its simplicity, effectiveness, and implementation [41,44]
. The kNN-based classification technique can be effectively applied in real world and practical
classification tasks in several fields, such as expert and intelligence systems [41]. The kNN algorithm
is divided into two phases: the training phase and the classification phase [45]. The training examples
are vectors in the multidimensional feature space. Each vector has a class label. The training phase of
the algorithm only stores the feature vector (reference vector library) and class label of the training
samples [45]. In the classification phase, k is a user-defined constant, and an unlabeled vector is
classified by assigning the label which is most frequent among the k training samples nearest to
that query point. In other words, the kNN method compares the query point or an input feature
vector with a library of reference vectors, and the query point is identified to be of the class of library
feature vectors to which it has the closest distance [45]. Several distance criteria have been used in
previous studies, such as the Euclidean distance, correlation between samples, city block distance,
cosine distance, and Hamming distance [46]. In this study, Euclidean distance criteria were used.
which can be formulated as Equation (3).

dist(xi, xj) =

√√√√ D

∑
d=1

(xi,d − xj,d)2, (3)
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where dist(xi,xj) represents the Euclidean distance between two data points xi and xj, and samples are
represented by d feature dimensions [46].

Success rate is one of the most important parameters giving information about whether the
classifier is working effectively. Another parameter that is used to evaluate the success of the classifier
is the reliability coefficient (κ), and it is described as the criterion used for giving the same result every
time for the data being classified [47]. κ can be formulated as in Equation (4) [48].

κ =
πA − πE
1− πE

. (4)

πA and πE can be formulated as in Equations (5) and (6), respectively .

πA =
TP + TN

TP + TN + FP + FN
(5)

πE =
(TP + FP).(TP + FN)

(TP + TN + FP + FN)2 +
(FN + TN).(FP + TN)

(TP + TN + FP + FN)2 . (6)

In the Equations (5) and (6), TP, FP, TN, and FN are the predicted true positive, false positive,
true negative, and false negative values, respectively.

The basic success criteria and parameters of a classification or test are accuracy (ACC), sensitivity
(SNS), specificity (SPC), positive/negative predictive values, and positive/negative likelihood
ratios [47,49]. ACC, SNS, and SPC can be formulated as Equation (7)–(8), respectively.

ACC =
TP + TN

TP + TN + FP + FN
(7)

SNS =
TP

TP + FN
(8)

SPC =
TN

TN + FP
. (9)

FAR is an expression of performance used for misclassification of explosive detection. FAR can be
formulated as Equation (9) [47] .

FAR =
FP + FN

TP + TN + FP + FN
. (10)

4. Experiments

With the aim of detecting and classifying BEs and IEDs by the designed data collection system,
the area used for the measurements was first filled with humid soil. A test sample was buried 2–3 cm
under the top of the soil surface, and its position was kept constant. The sensor array was placed
along the positive x-axis direction, and then data collection process was carried out by moving this
sensor array along the y-axis in 25 steps. Each buried test sample was scanned along the positive
z-axis at distances of 5 cm, 10 cm, 15 cm, and 20 cm from the top of the buried sample. And then
the 32 × 25 dimensions data matrices were obtained from each scan (32: Number of sensors placed
along the x axis, 25: Number of scan steps of y axis). In the study, 33 different samples having
different ferromagnetic properties were scanned. Ten out of thirty-three samples were explosives in
standard production, and they have frequently been used for IEDs and warfare. The appearances and
general physical properties of these samples are shown in Figure 7. In addition, ten out of thirty-three
samples were kinds of cases having different sizes and geometries and are still being used in the IED
productions. The appearances and general physical properties of these samples are given in Figure 8.
The remaining 13 samples were non-explosive materials having IED geometries and yielding close
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results to the magnetic field images of IEDs and explosives. The appearances and general physical
properties of these samples are given in Figure 9.

Figure 7. Appearances and physical properties of the explosive samples with standard production.

Figure 8. Appearances and physical properties of the samples used as cases in improvised explosive
devices (IEDs).
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Figure 9. Appearances and physical properties of the non-explosive samples.

A two-dimensional gray scale image of each sample was obtained by using GUIU with the
help of data matrices of 32 × 25 dimensions recovered from the scan results. Two-dimensional gray
scale images scanned at 5cm distance for all 33 samples are given in Figure 10. As can be seen in the
Figure 10, light regions indicate positive magnetic field density, whereas dark regions indicate negative
magnetic field density.

In gray scale images, the color information is stored in numerical values between 32,768 (100%
white) and −32,768 (100% black) obtained from the ADC channels. The zero (gray) value indicates the
combination of 50% black and 50% white and this corresponds to no magnetic field. As can be seen in
Figure 11, the numbers of gray points in the images increase with the increase of scanning height in
the z-axis for all samples. When the images obtained from different heights are evaluated as a whole,
it can be seen that rate of the gray scale in the images does not change too much. In total, 132 different
datasets were recorded as a result of the magnetic measurements carried out at 5 cm, 10 cm, 15 cm,
and 20 cm distances for 33 different test samples. Each dataset actually contains a 32 × 25-dimensional
data matrix. In the classification study, 80 datasets were categorized as explosives/IEDs, and the other
52 datasets as non-explosive materials. Max, Min, σ, KC, and AM features were calculated and used to
characterize these datasets. It is important to know which features will be used in the classification.
The usage of single feature is more likely to cause coincidence results in the classification. Eleven
different groups were created to examine the effects of the all features for the classification. The feature
groups and elements are given in Table 1.
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Figure 10. Grey scale graphics obtained as a result of magnetic field scans performed at a distance
of 5 cm.

Figure 11. Grey scale images obtained from 81mm Mortar Ammunition, Sample 6, and Sample 21,
at the heights of 5 cm, 10 cm, 15 cm, and 20 cm.
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Table 1. Feature groups and elements.

Max Min σ KC AM

Group 1 X X X
Group 2 X X X
Group 3 X X X
Group 4 X X X X
Group 5 X X X X
Group 6 X X X X
Group 7 X X X
Group 8 X X
Group 9 X X
Group 10 X X
Group 11 X X X X X

5. Results and Discussion

Within the scope of two different classification studies, TP, FP, TN, FN, ACC, SNS, SPC, and κ

values were calculated, and different k values were selected. In the first classification study, 32 × 25
datasets were used, and the kNN classification algorithms were operated for the feature groups in
Table 1 and for different k values. And then, TP, FP, TN, FN, ACC, and κ values were calculated
using the numerical values obtained. The results of the first classification process are given in Table 2.
The conditions for the κ being greater than 0.6 correspond to the "good reliability" for the chosen
conditions in the classification [50]. When the classification results are examined, it can be easily seen
that the best ACC value was obtained in the Group 11 while k = 3.

Table 2. Classification results of kNN for 32 × 25 data matrices.

Feature Groups

1 2 3 4 5 6 7 8 9 10 11

k→3 κ 0.5 0.55 0.55 0.64 0.56 0.59 0.64 0.56 0.57 0.53 0.7

TP 66 67 65 70 70 65 66 69 67 67 74

FP 14 13 15 10 10 15 14 11 13 13 6

TN 35 37 39 40 35 41 43 36 38 36 40

FN 17 15 13 12 17 11 9 16 14 16 12

ACC 0.77 0.79 0.79 0.83 0.8 0.8 0.83 0.8 0.8 0.78 0.86

k→5 κ 0.48 0.48 0.48 0.49 0.55 0.51 0.58 0.61 0.56 0.52 0.57

TP 67 67 62 63 71 63 63 70 68 66 66

FP 13 13 18 17 9 17 17 10 12 14 14

TN 33 33 37 37 34 38 42 38 37 36 39

FN 19 19 15 15 18 14 10 14 15 16 13

ACC 0.76 0.76 0.75 0.76 0.8 0.77 0.8 0.82 0.8 0.77 0.8

k→7 κ 0.42 0.42 0.34 0.57 0.5 0.4 0.6 0.6 0.54 0.42 0.61

TP 68 68 60 66 70 63 65 68 69 64 68

FP 12 12 20 14 10 17 15 12 11 16 12

TN 29 29 31 39 32 32 42 39 35 32 12

FN 23 23 21 13 20 20 10 13 17 20 40

ACC 0.73 0.73 0.69 0.8 0.77 0.72 0.81 0.81 0.79 0.73 0.61

Mean Values

κ: 0.53 TP: 67 FP: 13 TN: 36
FN: 16 ACC: 0.78
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During the sample scan, x–z projection plots were also obtained. Figure 12 shows the x–z
projection plots of 60 mm Mortar Ammunition, M16AP (Anti-Personnel) Mine, Sample 3, and Sample
11 scanned at 5 cm distance. These plots includes different unique properties for each sample.
Therefore, instead of using 32 × 25 data matrices directly, it was thought that the use of data matrices
obtained from x–z projection plots would provide significant improvements in system and classification
performance. For this purpose, new 32 × 2 data matrices having same properties were created by
reducing the dimensions of 32 × 25 data matrices. Thus, 32 × 25 matrices, which had800 independent
data points, were reduced into 32 × 2 matrices, which had 64 independent data points. While
generating 32 × 2 data matrices, the maximum and minimum values for each column of 32 × 25 data
matrices were determined. Then, the maximum and minimum values of each 32 × 25 matrix were
placed in the first and second rows of 32 × 2 data matrices, respectively. A schematic diagram of how
these processes were performed is given in Figure 13.

Figure 12. The x–z projection plots for 60 mm Mortar Ammunition, M16 Anti-Personal (AP) Mine,
Sample 3, and Sample 11.

In the second classification study, 32× 2 datasets were used, and the kNN classification algorithms
were operated for the feature groups in Table 1 and for different k values. And then, TP, FP, TN, FN,
ACC, and κ values were calculated using the numerical values obtained. The results of the second
classification process are given in Table 3. The conditions for the κ being greater than 0.6 correspond
to the "good reliability" for the chosen conditions in the classification. When the classification results
are examined, it can be easily seen that the best ACC value was obtained in the Group 10 while k = 3.
In this study, explosive materials have been successfully distinguished from non-explosive ones by
using reduced data matrices and the features that have been defined. The best result has been obtained
for the comparison based on the standard deviation and arithmetic mean. While the best ACC value
has been achieved to be 0.86 for the classification carried out with 32 × 25 data matrices, a 0.95 ACC
value has been obtained for 32 × 2. In the classifications made with 32 × 25 data matrices, the κ

value was obtained as greater than 0.6 for 7 conditions; this value was obtained for 27 conditions in
32 × 2 data matrices. Both of those results reveal a significant increase in classification success after
reducing the matrix dimensions. If there is a comparison made between in the mean values of TP, FP,
TN, FN, ACC, and κ, then the best results have been obtained for 32 × 2 data matrices. This situation
explains that the dimension reduction is essential to get best kNN classification. Classification times
have been determined to be 42 ms and 3.62 ms for the groups with the best results: the data matrices
of 32 × 25 and 32 × 2, respectively. This means that 23.80 and 276.2 datasets can be classified in
one second for 32 × 25 and 32 × 2 data matrices, respectively. By subjecting 32 × 25 and 32 × 2



Appl. Sci. 2019, 9, 5415 14 of 18

data matrices to the kNN classification algorithm, samples having explosive properties have been
distinguished successfully from the non-explosives materials by 86% and 95%, respectively. There have
been significant improvements in the speed and in the number of datasets processed in one second
in the classification made for 32 × 2 data matrices. In the conventional buried object and explosive
detection systems, FAR is 50% (50% classification success). In our study, FAR was calculated as 5.31%
for selected samples, and this ratio indicates a significant improvement.

Table 3. Classification results of kNN for 32 × 2 data matrices.

Feature Groups

1 2 3 4 5 6 7 8 9 10 11

k→3 κ 0.82 0.67 0.71 0.8 0.75 0.81 0.87 0.67 0.85 0.89 0.83

TP 76 67 71 78 77 73 75 65 75 76 78

FP 4 13 9 2 3 7 5 15 5 4 2

TN 45 44 43 42 40 47 49 46 48 49 44

FN 7 8 9 10 12 5 3 6 4 3 8

ACC 0.92 0.84 0.86 0.91 0.89 0.91 0.94 0.84 0.93 0.95 0.92

k→5 κ 0.67 0.54 0.63 0.75 0.7 0.66 0.79 0.52 0.72 0.82 0.76

TP 73 65 68 74 74 70 72 60 74 77 73

FP 7 15 12 6 6 10 8 20 6 3 7

TN 39 38 41 43 40 41 47 41 41 44 44

FN 13 14 11 9 12 11 5 11 11 8 8

ACC 0.85 0.78 0.83 0.89 0.86 0.84 0.9 0.77 0.87 0.92 0.89

k→7 κ 0.71 0.53 0.52 0.69 0.72 0.58 0.64 0.48 0.7 0.79 0.73

TP 73 68 66 70 74 67 65 61 70 74 72

FP 7 12 14 10 6 13 15 19 10 6 8

TN 41 35 36 43 41 39 44 38 43 45 43

FN 11 17 16 9 11 13 8 14 9 7 9

ACC 0.86 0.78 0.77 0.86 0.87 0.8 0.83 0.75 0.86 0.9 0.87

Mean Values

κ: 0.71 TP: 71 FP: 9 TN: 43
FN: 9 ACC: 0.86
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Figure 13. Steps for creating 32 × 2 data matrices.

6. Conclusions

The results which were obtained with this study have been compared with the similar ones in
the literature.

* Yılmaz et al. performed passive measurements in their studies, used the MA method, and
classified five different types of mines at 85.8% [37]. In our novel study, 10 different types of
explosives were classified with 95% performance.

* In the study of Nazlıbilek et al., active measurements were made the MA method was used,
and the explosives were detected and visualized [29]. In our study, passive measurements were
made, explosives were detected, and real time imaging was performed.

* Ege et al. used a fluxgate sensor network in their study and reported that buried bodies having
ferromagnetic content could be detected by passive measurements [33]. However, the position
of the sensor network affected the results negatively. In our study, independent measurements
without being effected by position were made with fluxgate sensors.

* In the previous studies [29,33,37] the measurement results changed depending on the sensor
position, which made it difficult to make real-time measurements. By the measuring circuit
developed in our study, position-independent measurements can be performed.

Studies conducted with magnetic anomaly method for detection buried objects and explosives
have still been continueing. There are still many unknowns for the usage of this method in real-time
measurements. It is thought that the studies to be conducted with different soil types, different
geographical regions, and different classification methods will determine the future in this field.
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24. Elsheikh, N.A. Multi-parameter optimization of a (3He-252Cf-3He) neutron backscattering sensor for
landmine detection. J. Radiat. Res. Appl. Sci. 2017, 10, 122–127. doi:10.1016/j.jrras.2017.02.001. [CrossRef]

25. Bom, V.R.; Datema, C.P.; van Eijk, C.W.E. DUNBLAD, the Delft University Neutron Backscatter LAnd-mine
Detector, a status report. AIP Conf. Proc. 2003, 680, 935–938. doi:10.1063/1.1619862. [CrossRef]

26. Kabessa, Y.; Eyal, O.; Bar-On, O.; Korouma, V.; Yagur-Kroll, S.; Belkin, S.; Agranat, A.J. Standoff detection
of explosives and buried landmines using fluorescent bacterial sensor cells. Biosens. Bioelectron. 2016,
79, 784–788. doi:10.1016/j.bios.2016.01.011. [CrossRef]

27. Miri-Hakimabad, H.; Panjeh, H.; Vejdani-Noghreiyan, A. Experimental optimization of a landmine detection
facility using PGNAA method. Nucl. Sci. Tech. 2008, 19, 109–112. doi:10.1016/S1001-8042(08)60033-0.
[CrossRef]

28. Csikai, J.; Dóczi, R.; Király, B. Investigations on landmine detection by neutron-based techniques. Appl. Radiat.
Isot. 2004, 61, 11–20. doi:10.1016/j.apradiso.2004.02.011. [CrossRef]

29. Nazlibilek, S.; Kalender, O.; Ege, Y. Mine Identification and Classification by Mobile Sensor Network
Using Magnetic Anomaly. IEEE Trans. Instrum. Meas. 2011, 60, 1028–1036. doi:10.1109/TIM.2010.2060220.
[CrossRef]

30. Ege, Y.; Kalender, O.; Nazlibilek, S. Direction finding of moving ferromagnetic objects inside water by
magnetic anomaly. Sens. Actuators A Phys. 2008, 147, 52 – 59. doi:10.1016/j.sna.2008.03.010. [CrossRef]

31. Nazlibilek, S.; Ege, Y.; Kalender, O. A multi-sensor network for direction finding of moving
ferromagnetic objects inside water by magnetic anomaly. Measurement 2009, 42, 1402–1416.
doi:10.1016/j.measurement.2009.06.002. [CrossRef]
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