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Abstract. Noiri and Popa [18] have defined the minimal local function and the minimal structurem∗H which containsm in a
hereditary minimal space (X,m,H). Moreover the concepts ofm−Hg−closed sets and (Λ,m∗H)−closed sets in a hereditary minimal
space (X,m,H) are presented and investigated by Noiri and Popa in [18]. In this paper, we define the notionsm∗−g−closed sets and
m∗ − Hg−closed sets in a hereditary minimal space (X,m,H) and explore some of their basic properties and few characterizations.
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INTRODUCTION

The idea of minimal spaces was first discovered by Popa and Noiri [24]. A subfamilymof a nonempty setX is called
a minimal structure if∅ ∈ m andX ∈ m. Since then, many topologists have shown an increasing trend to study this
notion. Insomuch that; A great deal of survey (e.g. see [1-7, 9, 11, 13-17, 19-23]) occurred as the by-products of this
concept.

The notion of ideals in topological spaces was revealed by Kuratowski [12]. Janković and Hamlett [10] presented
the notion of the local function in an ideal topological space (X, τ, I ) and then generated the topologyτ∗. And they
examined in detail the properties of this topology.

Ozbakır and Yildirim [19] introduced and studied the concepts ofm∗−closed sets andm− Ig−closed sets in an
ideal minimal space. Them−local function and minimal∗−closures in an ideal minimal space (X,m, I ) are presented
and enquired.

A subfamilyH of the power set of X is called a hereditary class [8] if B⊂ A and A∈ H implies B∈ H.
T. Noiri and V. Popa [18] have defined a new set−operator on a minimal space by using the inherited class given

Cśasźar [8]. A minimal space (X,m) with a hereditary classH on X is called a hereditary minimal space (briefly
hereditarym− space) and is denoted by (X,m,H). Moreover, Noiri and Popa [18] have introducedm− Hg−closed
sets and (Λ,m∗H)−closed sets in a hereditary minimal space (X,m, I ). And they have obtained decompositions of
m∗H−closed sets by usingm− Hg−closed sets and (Λ,m∗H)−closed sets.

In the first section of this paper, we recall the basic concepts that were required for the study. In the second
section, we introduce the concepts ofm∗ − g− closed sets andm∗ − Hg−closed sets in a hereditary minimal space
(X,m,H). And we study their properties and show that anm∗ − g−closed set is weaker than anm−closed set and
stronger than anmg−closed set. In the last section, by usingm∗ − g−closed sets we introduce some new types of
separation axioms calledm∗ − R0 andm∗ − R1 and investigate some of their characterizations.

Third International Conference of Mathematical Sciences (ICMS 2019)
AIP Conf. Proc. 2183, 030013-1–030013-3; https://doi.org/10.1063/1.5136117

Published by AIP Publishing. 978-0-7354-1930-8/$30.00

030013-1



m∗-g-closedsets

Definition 1 A subset A of a hereditary m−space(X,m,H) is said to be m∗ − Hg−closed (resp. m∗ − g −closed)
set if A∗mH ⊂ U (resp.mCl(A) ⊂ U) whenever A⊂ U and U is m∗H −open. A subset A of X is said to be m∗−Hg−open
(resp. m∗ − g− open) if its complement is m∗ − Hg−closed(resp. m∗ − g−closed).

Proposition 1 Let (X,m,H) be a hereditary m−space. Then for a subset of X, the following implications hold:

m− closed⇒ m∗H − closed
⇓ ⇓

m∗ − g− closed⇒ m∗ − Hg − closed
⇓ ⇓

mg− closed⇒ m− Hg − closed

m∗-R0 spaces

In this section we study some new types of separation axiom in a hereditarym−space (X,m,H) by usingm∗−g−closed
sets.

Definition 2 An m−space(X,m) is said to be m−R0 [7] if for each m−open set U and each x∈ U, mCl({x}) ⊆ U.

The notion ofm∗ − R0 spaces is defined as follows:

Definition 3 A hereditary m−space(X,m,H) said to be m∗ − R0 if for every m∗H−open set U and each x∈ U,
mCl({x}) ⊆ U.

Remark 1 Since m−open sets are m∗H−open, every m∗ − R0 space is m− R0.

We define a separation axiom calledm∗ − R1 which is stronger thanm∗ − R0.

Definition 4 A hereditary m−space(X,m,H) is said to be m∗−R1 if for every x, y ∈ X with mCl({x}) ,mCl∗H({y}),
there exist two disjoint m∗H−open sets U and V such that mCl({x}) ⊆ U and mCl∗H({y}) ⊆ V.

Theorem 1 We obtain the implications for a hereditary m−space(X,m,H).

m∗ − R1 space
⇓

m∗ − R0 space
⇓

m− R0 space
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