
IFAC PapersOnLine 52-13 (2019) 992–997

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2019.11.324

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

10.1016/j.ifacol.2019.11.324 2405-8963

     

Type-1 U-shaped Assembly Line Balancing under uncertain task time 

Yuchen Li *. Xiaofeng Hu**. Xiaowen Tang.* Ibrahim Kucukkoc*** 
 

*School of Economics and Management, Beijing University of Technology,  

100124,China (e-mail: liyuchen@bjut.edu.cn;txw@bjut.edu.cn). 

**School  of Mechanical Engineering, Shanghai Jiao Tong University,  

200240, China, (e-mail: wshxf@sjtu.edu.cn)} 

***Department of Industrial Engineering, Balikesir University,  

10145, Turkey, (e-mail: ikucukkoc@gmail.com)} 

Abstract: Recently, assembly line balancing problem with uncertain task time gains more and more 

attention in the literature. Task time uncertainty may overload workstations. Uncertain task time 

attributes were studied in the frameworks of the probability theory. In this paper, we use a new method, 

which is the uncertainty theory, to model the uncertain task time as the historical task time information is 

unavailable. We incorporate the uncertainty into the constraints of the type-1 U-shaped assembly line 

balancing problem. We derive some useful theorems related to the optimal solutions. Further, we develop 

an algorithm based on the branch and bound remember algorithm to solve the proposed problem. Finally, 

numerical studies are conducted to illustrate our model. 

Copyright © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All 

rights reserved. 

Keywords: Assembly line balancing; Uncertainty theory; Uncertain Programming; Uncertain task time 

attribute; Branch and bound remember. 

 

1. INTRODUCTION 

An assembly line is a manufacturing process in which parts 

are added as the semi-finished assembly moves from 

workstation to workstation where the parts are added in 

sequence until the final assembly is produced. The basic 

structure of the assembly line is that workers manufacture 

and assemble the product by performing a sequence of tasks 

along a moving device, e.g., conveyor belt. An example of 

data structure of an assembly line is presented in the 

following directed acyclic digraph (Figure 1). The number 

inside the node designates the task number and the number 

outside the node is the operation time (task time) for the task. 

The directed arcs show the precedence relationship between 

pairs of tasks. In Figure 1 there are 10 tasks with task time 

ranging from 2 to 9. 

 
Figure 1 Precedence digraph of 10 tasks assembly 

line 

Bryton (1954) first proposed the assembly line balancing 

problem and the first scientific research was done by 

Salveson (1955). Type-I balancing problem is to minimize 

the number of stations m given the cycle time c. There are 

several types of assembly lines including two-sided, U-

shaped, parallel assembly lines and so on (Battaïa and Dolgui, 

2013). In this paper, we focus on the U-shaped assembly line. 
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Figure 2 The basic structure of an U-shaped  

The U-shaped line is proposed by Moden (1993). Figure 

2 shows the basic structure of a U-shaped assembly line. The 

line (conveyor belt) is arranged like a “U” shape. A station 

can cross over the line and consists of two segments, entrance 

side and exit side. When a task is available to be assigned to 

the entrance/exit side of a station, all of its 

predecessors/successors must have been assigned before. 

The paper addresses a practical problem that task time is 

uncertain and there is a lack of historical data of task times. 

Task time is uncertain during production due to the 

technology changes, environmental changes, and learning 

effect of the human workers (Li and Boucher, 2016). Most 

research utilizes the probability theory to model the task time 

uncertainty. However, we sometimes lack information for 

task times, especially when a new product is going to be 

assembled. In this regard, we should resort to some new 

methods other than probability theory to solve the problem.  

9th IFAC Conference on Manufacturing Modelling, Management and
Control
Berlin, Germany, August 28-30, 2019

Copyright © 2019 IFAC 1008

     

Type-1 U-shaped Assembly Line Balancing under uncertain task time 

Yuchen Li *. Xiaofeng Hu**. Xiaowen Tang.* Ibrahim Kucukkoc*** 
 

*School of Economics and Management, Beijing University of Technology,  

100124,China (e-mail: liyuchen@bjut.edu.cn;txw@bjut.edu.cn). 

**School  of Mechanical Engineering, Shanghai Jiao Tong University,  

200240, China, (e-mail: wshxf@sjtu.edu.cn)} 

***Department of Industrial Engineering, Balikesir University,  

10145, Turkey, (e-mail: ikucukkoc@gmail.com)} 

Abstract: Recently, assembly line balancing problem with uncertain task time gains more and more 

attention in the literature. Task time uncertainty may overload workstations. Uncertain task time 

attributes were studied in the frameworks of the probability theory. In this paper, we use a new method, 

which is the uncertainty theory, to model the uncertain task time as the historical task time information is 

unavailable. We incorporate the uncertainty into the constraints of the type-1 U-shaped assembly line 

balancing problem. We derive some useful theorems related to the optimal solutions. Further, we develop 

an algorithm based on the branch and bound remember algorithm to solve the proposed problem. Finally, 

numerical studies are conducted to illustrate our model. 

Copyright © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All 

rights reserved. 

Keywords: Assembly line balancing; Uncertainty theory; Uncertain Programming; Uncertain task time 

attribute; Branch and bound remember. 

 

1. INTRODUCTION 

An assembly line is a manufacturing process in which parts 

are added as the semi-finished assembly moves from 

workstation to workstation where the parts are added in 

sequence until the final assembly is produced. The basic 

structure of the assembly line is that workers manufacture 

and assemble the product by performing a sequence of tasks 

along a moving device, e.g., conveyor belt. An example of 

data structure of an assembly line is presented in the 

following directed acyclic digraph (Figure 1). The number 

inside the node designates the task number and the number 

outside the node is the operation time (task time) for the task. 

The directed arcs show the precedence relationship between 

pairs of tasks. In Figure 1 there are 10 tasks with task time 

ranging from 2 to 9. 

 
Figure 1 Precedence digraph of 10 tasks assembly 

line 

Bryton (1954) first proposed the assembly line balancing 

problem and the first scientific research was done by 

Salveson (1955). Type-I balancing problem is to minimize 

the number of stations m given the cycle time c. There are 

several types of assembly lines including two-sided, U-

shaped, parallel assembly lines and so on (Battaïa and Dolgui, 

2013). In this paper, we focus on the U-shaped assembly line. 

Station 

1
Station 

2
Station 

m

Conveyor belt

Entrance

Exit

 

Figure 2 The basic structure of an U-shaped  

The U-shaped line is proposed by Moden (1993). Figure 

2 shows the basic structure of a U-shaped assembly line. The 

line (conveyor belt) is arranged like a “U” shape. A station 

can cross over the line and consists of two segments, entrance 

side and exit side. When a task is available to be assigned to 

the entrance/exit side of a station, all of its 

predecessors/successors must have been assigned before. 

The paper addresses a practical problem that task time is 

uncertain and there is a lack of historical data of task times. 

Task time is uncertain during production due to the 

technology changes, environmental changes, and learning 

effect of the human workers (Li and Boucher, 2016). Most 

research utilizes the probability theory to model the task time 

uncertainty. However, we sometimes lack information for 

task times, especially when a new product is going to be 

assembled. In this regard, we should resort to some new 

methods other than probability theory to solve the problem.  

9th IFAC Conference on Manufacturing Modelling, Management and
Control
Berlin, Germany, August 28-30, 2019

Copyright © 2019 IFAC 1008
     

Type-1 U-shaped Assembly Line Balancing under uncertain task time 

Yuchen Li *. Xiaofeng Hu**. Xiaowen Tang.* Ibrahim Kucukkoc*** 
 

*School of Economics and Management, Beijing University of Technology,  

100124,China (e-mail: liyuchen@bjut.edu.cn;txw@bjut.edu.cn). 

**School  of Mechanical Engineering, Shanghai Jiao Tong University,  

200240, China, (e-mail: wshxf@sjtu.edu.cn)} 

***Department of Industrial Engineering, Balikesir University,  

10145, Turkey, (e-mail: ikucukkoc@gmail.com)} 

Abstract: Recently, assembly line balancing problem with uncertain task time gains more and more 

attention in the literature. Task time uncertainty may overload workstations. Uncertain task time 

attributes were studied in the frameworks of the probability theory. In this paper, we use a new method, 

which is the uncertainty theory, to model the uncertain task time as the historical task time information is 

unavailable. We incorporate the uncertainty into the constraints of the type-1 U-shaped assembly line 

balancing problem. We derive some useful theorems related to the optimal solutions. Further, we develop 

an algorithm based on the branch and bound remember algorithm to solve the proposed problem. Finally, 

numerical studies are conducted to illustrate our model. 

Copyright © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All 

rights reserved. 

Keywords: Assembly line balancing; Uncertainty theory; Uncertain Programming; Uncertain task time 

attribute; Branch and bound remember. 

 

1. INTRODUCTION 

An assembly line is a manufacturing process in which parts 

are added as the semi-finished assembly moves from 

workstation to workstation where the parts are added in 

sequence until the final assembly is produced. The basic 

structure of the assembly line is that workers manufacture 

and assemble the product by performing a sequence of tasks 

along a moving device, e.g., conveyor belt. An example of 

data structure of an assembly line is presented in the 

following directed acyclic digraph (Figure 1). The number 

inside the node designates the task number and the number 

outside the node is the operation time (task time) for the task. 

The directed arcs show the precedence relationship between 

pairs of tasks. In Figure 1 there are 10 tasks with task time 

ranging from 2 to 9. 

 
Figure 1 Precedence digraph of 10 tasks assembly 

line 

Bryton (1954) first proposed the assembly line balancing 

problem and the first scientific research was done by 

Salveson (1955). Type-I balancing problem is to minimize 

the number of stations m given the cycle time c. There are 

several types of assembly lines including two-sided, U-

shaped, parallel assembly lines and so on (Battaïa and Dolgui, 

2013). In this paper, we focus on the U-shaped assembly line. 

Station 

1
Station 

2
Station 

m

Conveyor belt

Entrance

Exit

 

Figure 2 The basic structure of an U-shaped  

The U-shaped line is proposed by Moden (1993). Figure 

2 shows the basic structure of a U-shaped assembly line. The 

line (conveyor belt) is arranged like a “U” shape. A station 

can cross over the line and consists of two segments, entrance 

side and exit side. When a task is available to be assigned to 

the entrance/exit side of a station, all of its 

predecessors/successors must have been assigned before. 

The paper addresses a practical problem that task time is 

uncertain and there is a lack of historical data of task times. 

Task time is uncertain during production due to the 

technology changes, environmental changes, and learning 

effect of the human workers (Li and Boucher, 2016). Most 

research utilizes the probability theory to model the task time 

uncertainty. However, we sometimes lack information for 

task times, especially when a new product is going to be 

assembled. In this regard, we should resort to some new 

methods other than probability theory to solve the problem.  

9th IFAC Conference on Manufacturing Modelling, Management and
Control
Berlin, Germany, August 28-30, 2019

Copyright © 2019 IFAC 1008



	 Yuchen Li  et al. / IFAC PapersOnLine 52-13 (2019) 992–997	 993

     

Type-1 U-shaped Assembly Line Balancing under uncertain task time 

Yuchen Li *. Xiaofeng Hu**. Xiaowen Tang.* Ibrahim Kucukkoc*** 
 

*School of Economics and Management, Beijing University of Technology,  

100124,China (e-mail: liyuchen@bjut.edu.cn;txw@bjut.edu.cn). 

**School  of Mechanical Engineering, Shanghai Jiao Tong University,  

200240, China, (e-mail: wshxf@sjtu.edu.cn)} 

***Department of Industrial Engineering, Balikesir University,  

10145, Turkey, (e-mail: ikucukkoc@gmail.com)} 

Abstract: Recently, assembly line balancing problem with uncertain task time gains more and more 

attention in the literature. Task time uncertainty may overload workstations. Uncertain task time 

attributes were studied in the frameworks of the probability theory. In this paper, we use a new method, 

which is the uncertainty theory, to model the uncertain task time as the historical task time information is 

unavailable. We incorporate the uncertainty into the constraints of the type-1 U-shaped assembly line 

balancing problem. We derive some useful theorems related to the optimal solutions. Further, we develop 

an algorithm based on the branch and bound remember algorithm to solve the proposed problem. Finally, 

numerical studies are conducted to illustrate our model. 

Copyright © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All 

rights reserved. 

Keywords: Assembly line balancing; Uncertainty theory; Uncertain Programming; Uncertain task time 

attribute; Branch and bound remember. 

 

1. INTRODUCTION 

An assembly line is a manufacturing process in which parts 

are added as the semi-finished assembly moves from 

workstation to workstation where the parts are added in 

sequence until the final assembly is produced. The basic 

structure of the assembly line is that workers manufacture 

and assemble the product by performing a sequence of tasks 

along a moving device, e.g., conveyor belt. An example of 

data structure of an assembly line is presented in the 

following directed acyclic digraph (Figure 1). The number 

inside the node designates the task number and the number 

outside the node is the operation time (task time) for the task. 

The directed arcs show the precedence relationship between 

pairs of tasks. In Figure 1 there are 10 tasks with task time 

ranging from 2 to 9. 

 
Figure 1 Precedence digraph of 10 tasks assembly 

line 

Bryton (1954) first proposed the assembly line balancing 

problem and the first scientific research was done by 

Salveson (1955). Type-I balancing problem is to minimize 

the number of stations m given the cycle time c. There are 

several types of assembly lines including two-sided, U-

shaped, parallel assembly lines and so on (Battaïa and Dolgui, 

2013). In this paper, we focus on the U-shaped assembly line. 

Station 

1
Station 

2
Station 

m

Conveyor belt

Entrance

Exit

 

Figure 2 The basic structure of an U-shaped  

The U-shaped line is proposed by Moden (1993). Figure 

2 shows the basic structure of a U-shaped assembly line. The 

line (conveyor belt) is arranged like a “U” shape. A station 

can cross over the line and consists of two segments, entrance 

side and exit side. When a task is available to be assigned to 

the entrance/exit side of a station, all of its 

predecessors/successors must have been assigned before. 

The paper addresses a practical problem that task time is 

uncertain and there is a lack of historical data of task times. 

Task time is uncertain during production due to the 

technology changes, environmental changes, and learning 

effect of the human workers (Li and Boucher, 2016). Most 

research utilizes the probability theory to model the task time 

uncertainty. However, we sometimes lack information for 

task times, especially when a new product is going to be 

assembled. In this regard, we should resort to some new 

methods other than probability theory to solve the problem.  

9th IFAC Conference on Manufacturing Modelling, Management and
Control
Berlin, Germany, August 28-30, 2019

Copyright © 2019 IFAC 1008

     

Type-1 U-shaped Assembly Line Balancing under uncertain task time 

Yuchen Li *. Xiaofeng Hu**. Xiaowen Tang.* Ibrahim Kucukkoc*** 
 

*School of Economics and Management, Beijing University of Technology,  

100124,China (e-mail: liyuchen@bjut.edu.cn;txw@bjut.edu.cn). 

**School  of Mechanical Engineering, Shanghai Jiao Tong University,  

200240, China, (e-mail: wshxf@sjtu.edu.cn)} 

***Department of Industrial Engineering, Balikesir University,  

10145, Turkey, (e-mail: ikucukkoc@gmail.com)} 

Abstract: Recently, assembly line balancing problem with uncertain task time gains more and more 

attention in the literature. Task time uncertainty may overload workstations. Uncertain task time 

attributes were studied in the frameworks of the probability theory. In this paper, we use a new method, 

which is the uncertainty theory, to model the uncertain task time as the historical task time information is 

unavailable. We incorporate the uncertainty into the constraints of the type-1 U-shaped assembly line 

balancing problem. We derive some useful theorems related to the optimal solutions. Further, we develop 

an algorithm based on the branch and bound remember algorithm to solve the proposed problem. Finally, 

numerical studies are conducted to illustrate our model. 

Copyright © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All 

rights reserved. 

Keywords: Assembly line balancing; Uncertainty theory; Uncertain Programming; Uncertain task time 

attribute; Branch and bound remember. 

 

1. INTRODUCTION 

An assembly line is a manufacturing process in which parts 

are added as the semi-finished assembly moves from 

workstation to workstation where the parts are added in 

sequence until the final assembly is produced. The basic 

structure of the assembly line is that workers manufacture 

and assemble the product by performing a sequence of tasks 

along a moving device, e.g., conveyor belt. An example of 

data structure of an assembly line is presented in the 

following directed acyclic digraph (Figure 1). The number 

inside the node designates the task number and the number 

outside the node is the operation time (task time) for the task. 

The directed arcs show the precedence relationship between 

pairs of tasks. In Figure 1 there are 10 tasks with task time 

ranging from 2 to 9. 

 
Figure 1 Precedence digraph of 10 tasks assembly 

line 

Bryton (1954) first proposed the assembly line balancing 

problem and the first scientific research was done by 

Salveson (1955). Type-I balancing problem is to minimize 

the number of stations m given the cycle time c. There are 

several types of assembly lines including two-sided, U-

shaped, parallel assembly lines and so on (Battaïa and Dolgui, 

2013). In this paper, we focus on the U-shaped assembly line. 

Station 

1
Station 

2
Station 

m

Conveyor belt

Entrance

Exit

 

Figure 2 The basic structure of an U-shaped  

The U-shaped line is proposed by Moden (1993). Figure 

2 shows the basic structure of a U-shaped assembly line. The 

line (conveyor belt) is arranged like a “U” shape. A station 

can cross over the line and consists of two segments, entrance 

side and exit side. When a task is available to be assigned to 

the entrance/exit side of a station, all of its 

predecessors/successors must have been assigned before. 

The paper addresses a practical problem that task time is 

uncertain and there is a lack of historical data of task times. 

Task time is uncertain during production due to the 

technology changes, environmental changes, and learning 

effect of the human workers (Li and Boucher, 2016). Most 

research utilizes the probability theory to model the task time 

uncertainty. However, we sometimes lack information for 

task times, especially when a new product is going to be 

assembled. In this regard, we should resort to some new 

methods other than probability theory to solve the problem.  

9th IFAC Conference on Manufacturing Modelling, Management and
Control
Berlin, Germany, August 28-30, 2019

Copyright © 2019 IFAC 1008
     

Type-1 U-shaped Assembly Line Balancing under uncertain task time 

Yuchen Li *. Xiaofeng Hu**. Xiaowen Tang.* Ibrahim Kucukkoc*** 
 

*School of Economics and Management, Beijing University of Technology,  

100124,China (e-mail: liyuchen@bjut.edu.cn;txw@bjut.edu.cn). 

**School  of Mechanical Engineering, Shanghai Jiao Tong University,  

200240, China, (e-mail: wshxf@sjtu.edu.cn)} 

***Department of Industrial Engineering, Balikesir University,  

10145, Turkey, (e-mail: ikucukkoc@gmail.com)} 

Abstract: Recently, assembly line balancing problem with uncertain task time gains more and more 

attention in the literature. Task time uncertainty may overload workstations. Uncertain task time 

attributes were studied in the frameworks of the probability theory. In this paper, we use a new method, 

which is the uncertainty theory, to model the uncertain task time as the historical task time information is 

unavailable. We incorporate the uncertainty into the constraints of the type-1 U-shaped assembly line 

balancing problem. We derive some useful theorems related to the optimal solutions. Further, we develop 

an algorithm based on the branch and bound remember algorithm to solve the proposed problem. Finally, 

numerical studies are conducted to illustrate our model. 

Copyright © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All 

rights reserved. 

Keywords: Assembly line balancing; Uncertainty theory; Uncertain Programming; Uncertain task time 

attribute; Branch and bound remember. 

 

1. INTRODUCTION 

An assembly line is a manufacturing process in which parts 

are added as the semi-finished assembly moves from 

workstation to workstation where the parts are added in 

sequence until the final assembly is produced. The basic 

structure of the assembly line is that workers manufacture 

and assemble the product by performing a sequence of tasks 

along a moving device, e.g., conveyor belt. An example of 

data structure of an assembly line is presented in the 

following directed acyclic digraph (Figure 1). The number 

inside the node designates the task number and the number 

outside the node is the operation time (task time) for the task. 

The directed arcs show the precedence relationship between 

pairs of tasks. In Figure 1 there are 10 tasks with task time 

ranging from 2 to 9. 

 
Figure 1 Precedence digraph of 10 tasks assembly 

line 

Bryton (1954) first proposed the assembly line balancing 

problem and the first scientific research was done by 

Salveson (1955). Type-I balancing problem is to minimize 

the number of stations m given the cycle time c. There are 

several types of assembly lines including two-sided, U-

shaped, parallel assembly lines and so on (Battaïa and Dolgui, 

2013). In this paper, we focus on the U-shaped assembly line. 

Station 

1
Station 

2
Station 

m

Conveyor belt

Entrance

Exit

 

Figure 2 The basic structure of an U-shaped  

The U-shaped line is proposed by Moden (1993). Figure 

2 shows the basic structure of a U-shaped assembly line. The 

line (conveyor belt) is arranged like a “U” shape. A station 

can cross over the line and consists of two segments, entrance 

side and exit side. When a task is available to be assigned to 

the entrance/exit side of a station, all of its 

predecessors/successors must have been assigned before. 

The paper addresses a practical problem that task time is 

uncertain and there is a lack of historical data of task times. 

Task time is uncertain during production due to the 

technology changes, environmental changes, and learning 

effect of the human workers (Li and Boucher, 2016). Most 

research utilizes the probability theory to model the task time 

uncertainty. However, we sometimes lack information for 

task times, especially when a new product is going to be 

assembled. In this regard, we should resort to some new 

methods other than probability theory to solve the problem.  

9th IFAC Conference on Manufacturing Modelling, Management and
Control
Berlin, Germany, August 28-30, 2019

Copyright © 2019 IFAC 1008

 

 

     

 

The remainder of this paper is organized as follows. A 

brief literature review for recent studies is in Section 2. We 

propose an uncertain programming model which embodies 

the uncertainty of the task time in Section 3. An algorithm, 

based on branch and bound remember algorithm, is 

developed in Section 4. Numerical studies are conducted in 

Section 5. Section 6 concludes the paper. The notations are 

given in Table 1. 

 

Table 1 Notations 

 

n the number of tasks 

m the number of stations 

c cycle time of the assembly line 

ti task time for task i, y=1...n 

xij 

1, if task i is assigned to the entrance 

side of station j; 0, otherwise 

yij 

1, if task i is assigned to the exit side 

of station j; 0, otherwise 

P 

precedence relation, if (v,o)∈P, v is a 

predecessor of o 

M(Λ) 

the uncertain measure for event Λ 
which indicates the belief degree that 

event will occur 

α the required belief degree 

Φi(x) 

the uncertainty distribution for task 

i's task time, i=1…n 

Φi
-1(α) 

the inverse uncertainty distribution 

for task i's task time, i=1…n 

 

2.  LITERATURE REVIEW 

U-shaped assembly line balancing with uncertain task 

time attribute has been studied in literature. Celik et al. (2014) 

used an ant colony method to rebalance U-lines with 

stochastic task times. Dong et al. (2014) minimized the 

expectation of overload time for U-shaped lines. Delice et al. 

(2016) proposed a novel stochastic two-sided U-shaped 

assembly line balancing problem and solved it by a genetic 

algorithm. Tiacci (2017) proposed a genetic approach to 

solve a mixed-model U-shaped assembly line considering 

stochastic task time. 

There is a disadvantage of probability theory when it is 

utilized to model the uncertain task time because we need 

enough samples to derive the probability distribution. 

However, task time data is sometimes unavailable, especially 

when manufacturing new products. In this case, we should 

invite some experts of the subject matter to obtain belief 

degrees for these task times. Liu (2012) used some examples 

to show that belief degrees cannot be modeled by probability 

theory. In this paper, we modeled the uncertain task time 

under a new mathematical framework—Uncertainty theory to 

encompass the uncertain task time in assembly line balancing 

problem.      

Uncertainty theory was found by Liu (2007) to model 

the belief degree and received a great deal of attention in 

academia. It has become an offshoot in mathematics for 

gauging the indeterminate phenomena. Later, Liu (2009) 

developed an uncertain programming model which is a 

mathematical programming pertaining to the uncertain 

variables. Then, uncertain programming was widely used to 

model the belief degree of some uncertain input in practical 

problems (Gao and Qin, 2016; Ke et al., 2015; Li and Liu, 

2017; Wen et al., 2014). Uncertain programming becomes an 

efficient tool to handle the uncertainty in various 

combinatorial optimization problems, such as project 

scheduling, facility location-allocation, machine scheduling 

and so on. To this end, we employ the uncertain 

programming to optimize the type 1 U-shaped assembly line 

balancing problem (UALBP1) where the task times it  are 

treated as uncertain variables.    

3. CHANCE-CONSTRAINED MODEL 

In this section, we develop an uncertain programming model 

which is chance related. Chance-constrained programming 

was initiated by Charnes and Cooper (1961). It is a powerful 

tool to deal with a system with uncertainty. In a chance-

constrained program, we optimize certain objective subject to 

some chance constraints where a fixed confidence interval α 

is specified. Task times 
it  are modeled as independent 

uncertain variables with uncertainty distribution Φi(x). The 

chance constraints in our proposed problem are that the belief 

degrees for all stations not getting overloaded should be 

greater than or equal to α. We formulate the type-1 chance-

constrained U-shaped assembly line balancing problem (CC-

UALBP1) as follows. Constraint (1) describes a task can only 

be assigned to the entrance or exit side of one station, 

constraint (2)-(3) ensure that a task is available to be assigned 

when all of its predecessors or successors have been assigned. 

Constraint (4) is the chance constraint regarding the 

uncertainty of the task time 
it . The constraint (4) guarantees 

that the belief degree for a station not being overloaded is not 

less than α.  

1

1 1

1 1

Min     (CC-UALBP1)

. .

( ) 1,         1, 2,...,              (1)

, , 1, 2,..., , ( , )   (2)

, , 1, 2,..., , ( , )   (3)

m

ij ij

j

m m

vj oj

j j

m m

oj vj

j j

m

s t

x y i n

jx jx v o n v o P

jy jy v o n v o P

=

= =

= =

+ = ∀ =

≤ ∀ = ∈

≤ ∀ = ∈

∑

∑ ∑

∑ ∑

 

1

{ ( )  } .  1, 2,...,     (4)
n

i ij ij

i

M t x y c j mα
=

+ ≤ ≥ ∀ =∑   

In CC-UALBP1, the production manager can control 

the belief degree in advance to guarantee the chance for the 

line not getting overloaded is below the predetermined cycle 

time. The CC-UALBP1 is not a deterministic model which 

requires a great amount of computational effort to solve it, let 

alone its NP-hard attribute. Next, we propose a theorem to 
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transform the CC-UALBP1 model into a crisp model, where 

the uncertain measure is removed. 

Theorem 3.1 Let 1 2, ,..., nt t t be independent uncertain 

variables with regular uncertainty distributions   Φ1(x), Φ2(x), 

… ,Φn(x) respectively. Then, 
1

{ ( )  }
n

i ij ij
i

M t x y c α
=

+ ≤ ≥∑ is 

equivalent to  

1

1

( )( + )  .               
n

i ij ij

i

x y cα−

=

Φ ≤∑  

 

Proof: 

For any station j, let ( )j i ij ijS t x y= + . Obviously, Sj is an 

increasing function in it . According to inverse uncertainty 

distribution theorem (Liu, 2010), for any 0 ≤ α ≤ 1, we have  

1 1

1

( ) ( ) ( )
n

j ij ij i

i

x yα α− −

=

Ψ = + Φ∑ , 

where Ψj is an uncertainty distribution of Sj.  

That is to say, 
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1

{  ( ) ( )} {  ( )}
n
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i

M S x y M Sα α α− −
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Thus,  
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We also know uncertainty distribution is an increasing 

function, this fact tells us that 

1

1

( ) ( ) .
n

ij ij i

i

x y cα−

=

+ Φ ≤∑  

The theorem is proved.                                              ■                

Therefore, we can employ Theorem 3.1 to transform the 

constraint (4) into constraint (5), and a crisp model is 

obtained  

1

1

( )( + )  .  1, 2,...,           (5)
n

i ij ij

i

x y c j mα−

=

Φ ≤ ∀ =∑  

We can also find the relationship between α and m by 

the following corollary. 

Corollary 3.1 Let 1 2, ,..., nt t t  be independent uncertain 

variables with regular uncertainty distributions Φ1(x), Φ2(x), 

… , Φn(x) respectively. Then, the optimal m for CCALBP1 

is nondecreasing in α. 

Proof: Suppose we have α1 and α2, α1≥α2. We would like to 

prove the optimal solution of CC-UALBP1 (α1) is also a 

feasible solution for CC-UALBP1 (α2). Let y1 = {y11
1,…, y-

ij
1,…, ymn

1} and x1 = {x11
1,…, xij

1,…, xmn
1}denote the optimal 

solution for CC-UALBP1 (α1) and m1 is the optimum. We 

plug {x1, y1} into the CC-UALBP1 (α2) to check whether the 

constraints are satisfied. 

It is obvious that (1), (2) and (3) are satisfied because 

they are independent of α. Because the inverse uncertainty 

distribution is increasing in α, we have 
1 1

2 1

1 1 1 1 1 1

2 1 1

1 1

( ) ( ),

( )( + ) ( )( )  ,  1, 2,..., ,  

i i

n n

i ij ij i ij ij

i i

x y x y c j m

α α

α α

− −

− −

= =

Φ ≤ Φ

Φ ≤ Φ + ≤ ∀ =∑ ∑
 

(5) is satisfied. Therefore, {x1, y1} is a feasible solution for 

CC-UALBP1 (α2) which output m1 stations. Since m1 is 

feasible, m1 becomes an upper bound for the optimum m2 of 

CC-UALBP1 (α2), and  m1≥m2. The corollary is proved.                                                                 
■ 

4. THE BRANCH AND BOUND REMEMBER 

ALGORITHM 

Sewell and Jacobson (2012) invented a branch and bound 

remember algorithm (BBR) which uses memory to eliminate 

dominated solutions, and BBR is the most efficient exact 

method for solving traditional line balancing problem. In this 

section, we propose an algorithm based on the framework of 

BBR to solve our problems. 

Bounds 

Lower and upper bounds are utilized to alleviate the 

complexity of the problem, i.e. reduce the number of 

iterations of the BBR. The lower bound tells us the best 

theoretical optimum we can achieve before a subproblem is 

solved. We modify the three lower bounds proposed in 

Sewell and Jacobson (2012) by considering the uncertain task 

time attribute. The first two lower bounds are as follows. 

Suppose we have a partial solution Ok = (A, U, E1, E2,…, Ek), 

where Ej is the task assignment to station j. A is the set of 

tasks assigned to one of the k stations and U is the set of 

unassigned tasks. Then, 
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We assign weight wi to each task so as to compute the 

third lower bounds (LB3). 
1

1

1

1

1      if ( ) 2 / 3
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1/ 2 if / 3 ( ) 2 / 3
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Therefore, the lower bound at station for partial solution 

Ok = (A, U, E1, E2,…, Ek) is LB = max (LB1, LB2, LB3). 
The upper bound reflects the current best outcome (m) 

as BBR is running. It can be obtained in branching process as 

mentioned below. If the lower bound of a subproblem is 

greater than or equal to the upper bound, that subproblem is 

fathomed meaning that there is no need to continue the 

branching process and, instead, we move back to the first 

station and branch an unexplored subproblem. 
Branching 

The branching process refers to finding a task sequence. 

It has two purposes in BBR: 1) find a feasible task 

assignment for a new station; 2) find an upper bound UB for 

the current subproblem. Assume there is a partial solution Ok 

= (A, U, E1, E2,…, Ek). The subproblem for this current 

original problem is to assign the tasks in U in order to find 
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transform the CC-UALBP1 model into a crisp model, where 

the uncertain measure is removed. 

Theorem 3.1 Let 1 2, ,..., nt t t be independent uncertain 

variables with regular uncertainty distributions   Φ1(x), Φ2(x), 

… ,Φn(x) respectively. Then, 
1

{ ( )  }
n

i ij ij
i

M t x y c α
=

+ ≤ ≥∑ is 

equivalent to  

1

1

( )( + )  .               
n

i ij ij

i
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=

Φ ≤∑  

 

Proof: 

For any station j, let ( )j i ij ijS t x y= + . Obviously, Sj is an 

increasing function in it . According to inverse uncertainty 

distribution theorem (Liu, 2010), for any 0 ≤ α ≤ 1, we have  

1 1

1

( ) ( ) ( )
n

j ij ij i

i

x yα α− −

=

Ψ = + Φ∑ , 

where Ψj is an uncertainty distribution of Sj.  

That is to say, 
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We also know uncertainty distribution is an increasing 

function, this fact tells us that 

1

1

( ) ( ) .
n

ij ij i

i

x y cα−

=

+ Φ ≤∑  

The theorem is proved.                                              ■                

Therefore, we can employ Theorem 3.1 to transform the 

constraint (4) into constraint (5), and a crisp model is 

obtained  

1

1

( )( + )  .  1, 2,...,           (5)
n

i ij ij

i

x y c j mα−

=

Φ ≤ ∀ =∑  

We can also find the relationship between α and m by 

the following corollary. 

Corollary 3.1 Let 1 2, ,..., nt t t  be independent uncertain 

variables with regular uncertainty distributions Φ1(x), Φ2(x), 

… , Φn(x) respectively. Then, the optimal m for CCALBP1 

is nondecreasing in α. 

Proof: Suppose we have α1 and α2, α1≥α2. We would like to 

prove the optimal solution of CC-UALBP1 (α1) is also a 

feasible solution for CC-UALBP1 (α2). Let y1 = {y11
1,…, y-

ij
1,…, ymn

1} and x1 = {x11
1,…, xij

1,…, xmn
1}denote the optimal 

solution for CC-UALBP1 (α1) and m1 is the optimum. We 

plug {x1, y1} into the CC-UALBP1 (α2) to check whether the 

constraints are satisfied. 

It is obvious that (1), (2) and (3) are satisfied because 

they are independent of α. Because the inverse uncertainty 

distribution is increasing in α, we have 
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(5) is satisfied. Therefore, {x1, y1} is a feasible solution for 

CC-UALBP1 (α2) which output m1 stations. Since m1 is 

feasible, m1 becomes an upper bound for the optimum m2 of 

CC-UALBP1 (α2), and  m1≥m2. The corollary is proved.                                                                 
■ 

4. THE BRANCH AND BOUND REMEMBER 

ALGORITHM 

Sewell and Jacobson (2012) invented a branch and bound 

remember algorithm (BBR) which uses memory to eliminate 

dominated solutions, and BBR is the most efficient exact 

method for solving traditional line balancing problem. In this 

section, we propose an algorithm based on the framework of 

BBR to solve our problems. 

Bounds 

Lower and upper bounds are utilized to alleviate the 

complexity of the problem, i.e. reduce the number of 

iterations of the BBR. The lower bound tells us the best 

theoretical optimum we can achieve before a subproblem is 

solved. We modify the three lower bounds proposed in 

Sewell and Jacobson (2012) by considering the uncertain task 

time attribute. The first two lower bounds are as follows. 

Suppose we have a partial solution Ok = (A, U, E1, E2,…, Ek), 

where Ej is the task assignment to station j. A is the set of 

tasks assigned to one of the k stations and U is the set of 

unassigned tasks. Then, 
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We assign weight wi to each task so as to compute the 

third lower bounds (LB3). 
1

1

1

1

1      if ( ) 2 / 3

2 / 3 if ( ) 2 / 3

1/ 2 if / 3 ( ) 2 / 3
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Therefore, the lower bound at station for partial solution 

Ok = (A, U, E1, E2,…, Ek) is LB = max (LB1, LB2, LB3). 
The upper bound reflects the current best outcome (m) 

as BBR is running. It can be obtained in branching process as 

mentioned below. If the lower bound of a subproblem is 

greater than or equal to the upper bound, that subproblem is 

fathomed meaning that there is no need to continue the 

branching process and, instead, we move back to the first 

station and branch an unexplored subproblem. 
Branching 

The branching process refers to finding a task sequence. 

It has two purposes in BBR: 1) find a feasible task 

assignment for a new station; 2) find an upper bound UB for 

the current subproblem. Assume there is a partial solution Ok 

= (A, U, E1, E2,…, Ek). The subproblem for this current 

original problem is to assign the tasks in U in order to find 
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the minimum number of stations. In the branching process, a 

task i is assigned to a station, and then the constraints are 

examined.  

To ensure that we do not get any overlapping feasible 

task sequence, we should assign tasks in an ascending order 

of the task’s number. As we know, the quality of a partial 

solution Ok has a negative relation with the cumulative idled 

time and a positive relation with the number of unassigned 

tasks. We end up with many feasible task assignments after 

the branching process is repeated. Therefore, we propose a 

criterion to select the partial solution to proceed. Set  

( ) / 0.02 | |kb O Id k U= − , 

where                         1= ( )  i

i A

Id kc α−

∈

− Φ∑  

We always choose the partial solution with the smallest 

b(Ok) . 

Remember 

As BBR is ongoing, every subproblem is memorized 

(stored). Before branching on a subproblem, it checks 

whether the subproblem is dominated by a previous 

subproblem. A subproblem Ok = (A, U, E1, E2,…, Ek) is 

dominated by another subproblem Ov = (A', U', E1', E2',…, 

Ev') whenever A' ⊆ A and v ≤ k. If so, then the best solution 

for Ov has no more stations than the best solution for Ok. 

Therefore, we sacrifice some computer memories to increase 

the computational speed. We could use a hash table to store 

subproblems in the program. 

The BBR algorithm is presented by a flow chart below 

Load the data 

（P,Φi(x), c）
START

Set k=1, Launch the 

Branching process, 

and obtain UBs. Set 

GUB=min(UBs) 

and get the best 

current solution

Calculate the LB for 

each partial solution 

Ok, find 

L={Ok|LB(Ok), 

LB(Ok)<GUB}

Is L empty?

Current best 

solution is the best 

solution,m=GUB

Y

STOP

Choose the 

subproblem with the 

smallest b(Ok),set 

I=Ok

N

k=k+1,Launch the 

Branching process, 

obtain UBs. 

Launch the 

Remember process 

to eliminate partial 

solutions

Set GUB=min(UBs, 

GUB), update the 

current best solution

Calculate the 

LB(Ok)

Is 

LB(Ok)≥GUB 
L=L\I, k=1Y

N  
Figure 3: The flow chart of the proposed algorithm 

 

5. NUMERICAL STUDIES 

Consider an assembly line with 28 tasks. The precedence 

graph is shown in Figure 4 (it is an actual telephone assembly 

line (Scholl, 1993). Assume the task time of the 28 tasks are 

zigzag uncertain variables it  ~ Ƶ(ai, bi, ci) which are 

presented in Table 2. We let c = 135, α = 0.95. The optimum 

is 8, and the optimal task assignment is shown in Table 3.  

2

4

5

108 11

19

21

22

23

3

24

26

6 7

17

25

27

18

20

9 15

12 13

14

28

1 16

 
Figure 4 The precedence graph 

 

Table 2 Dataset  

Task # Task time Task # Task time

1 Ƶ(60, 70, 80) 15 Ƶ(4, 5, 6)

2 Ƶ(42, 59, 75) 16 Ƶ(6, 8, 10)

3 Ƶ(25, 33, 36) 17 Ƶ(88, 97, 106)

4 Ƶ(5, 6, 7) 18 Ƶ(6, 8, 9)

5 Ƶ(0.7, 1, 1.5) 19 Ƶ(40, 47, 53)

6 Ƶ(22, 27, 34) 20 Ƶ(62, 67, 72)

7 Ƶ(14, 17, 20) 21 Ƶ(15, 17, 20)

8 Ƶ(50, 62, 70) 22 Ƶ(7, 8, 9)

9 Ƶ(25, 31, 37) 23 Ƶ(2, 3, 4)

10 Ƶ(50, 53, 55) 24 Ƶ(18, 21, 23)

11 Ƶ(17, 21, 25) 25 Ƶ(100, 107, 112)

12 Ƶ(16, 19, 24) 26 Ƶ(2.5, 3, 4)

13 Ƶ(94, 108, 115) 27 Ƶ(1, 2, 2.8)

14 Ƶ(45, 52, 60) 28 Ƶ(66, 72, 77)  
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Table 3 Optimal task assignments  
Station 1 Station 2 Station 3

Task assignment (1,4,5,19,22,26) (8,27,28) (2,3,6,7)

Station 6 Station 4 Station 5

Task assignment (14,20) (9,10,11,12,15,23) (15,16,18)

Station 7 Station 8

Task assignment (17,21,24) (25)  
 

Further, we test the α in the range of [0.1, 0.9] with the 

step size equal to 0.1. The results are presented in Table 4. 

The results are consistent with corollary 3.1 that m is 

nondecreasing in α. Therefore, with other input being held 

constant, more stations lead to more belief reliabilities. 

Table 4 Optimum under different α 
α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m 7 7 8 8 8 8 9 9 9  
 

We now turn our attention to the impact of task time 

variance on m. We increase the variance of the uncertain task 

time but maintain its expected value. We change the 

parameters of the zigzag distribution as follows. 
0 0

0 0 0

(1 ),  (1 ),

2
=  

2

per per

i i i i

per per
per i i i i i

i

a a per c c per

a b c a c
b

= × − = × +

+ + − −
，

  

where per indicates the degree of changes against the original 

zigzag uncertain distribution. The more per value is, the 

higher variance the uncertain task time has. We select 5 

particular per values, 0, 0.05, 0.1, 0.15 and 0.2, respectively. 

The results are shown in Table 5. As can be seen, the number 

of stations increases in task time variance as the expected 

value of task time remains the same. In another word, as the 

expected values of task times are the same, we need to open 

more stations to satisfy the increasing volatility of task times.  

Table 5 Optimum under different levels of variance  

per 0 0.05 0.1 0.15 0.2

m 8 9 10 11 11  

6. CONCLUSIONS 

We address the Type-1 U-shaped Assembly Line Balancing 

with uncertain task time in this paper. When the historical 

task time information is not available, the probability theory 

is not suitable to estimate the uncertain task time. 

Alternatively, uncertainty theory which is used to measure 

the belief degree can be utilized. In this paper, we employ the 

uncertainty theory to evaluate the uncertain task time. An 

uncertain programming model is proposed (CC-UALBP1) in 

order to minimize the number of stations considering the 

uncertain task attribute. Further, we transform the uncertain 

models into deterministic models to reduce the computational 

effort. We develop an algorithm based on branch and bound 

remember algorithm to find the optimal solutions. We apply 

the proposed models to describe a 28 tasks assembly line 

with uncertain task time attribute. In the future, our model 

and algorithm can be extended to other  assembly line 

problems (mixed-models, parallel stations, etc.) in assembly 

line balancing literature. 
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Table 3 Optimal task assignments  
Station 1 Station 2 Station 3

Task assignment (1,4,5,19,22,26) (8,27,28) (2,3,6,7)

Station 6 Station 4 Station 5

Task assignment (14,20) (9,10,11,12,15,23) (15,16,18)

Station 7 Station 8

Task assignment (17,21,24) (25)  
 

Further, we test the α in the range of [0.1, 0.9] with the 

step size equal to 0.1. The results are presented in Table 4. 

The results are consistent with corollary 3.1 that m is 

nondecreasing in α. Therefore, with other input being held 

constant, more stations lead to more belief reliabilities. 

Table 4 Optimum under different α 
α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m 7 7 8 8 8 8 9 9 9  
 

We now turn our attention to the impact of task time 

variance on m. We increase the variance of the uncertain task 

time but maintain its expected value. We change the 

parameters of the zigzag distribution as follows. 
0 0

0 0 0

(1 ),  (1 ),

2
=  

2

per per

i i i i

per per
per i i i i i

i

a a per c c per

a b c a c
b

= × − = × +

+ + − −
，

  

where per indicates the degree of changes against the original 

zigzag uncertain distribution. The more per value is, the 

higher variance the uncertain task time has. We select 5 

particular per values, 0, 0.05, 0.1, 0.15 and 0.2, respectively. 

The results are shown in Table 5. As can be seen, the number 

of stations increases in task time variance as the expected 

value of task time remains the same. In another word, as the 

expected values of task times are the same, we need to open 

more stations to satisfy the increasing volatility of task times.  

Table 5 Optimum under different levels of variance  

per 0 0.05 0.1 0.15 0.2

m 8 9 10 11 11  

6. CONCLUSIONS 

We address the Type-1 U-shaped Assembly Line Balancing 

with uncertain task time in this paper. When the historical 

task time information is not available, the probability theory 

is not suitable to estimate the uncertain task time. 

Alternatively, uncertainty theory which is used to measure 

the belief degree can be utilized. In this paper, we employ the 

uncertainty theory to evaluate the uncertain task time. An 

uncertain programming model is proposed (CC-UALBP1) in 

order to minimize the number of stations considering the 

uncertain task attribute. Further, we transform the uncertain 

models into deterministic models to reduce the computational 

effort. We develop an algorithm based on branch and bound 

remember algorithm to find the optimal solutions. We apply 

the proposed models to describe a 28 tasks assembly line 

with uncertain task time attribute. In the future, our model 

and algorithm can be extended to other  assembly line 

problems (mixed-models, parallel stations, etc.) in assembly 

line balancing literature. 
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