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The rotational embedded submanifold was first studied by Kuiper as a submanifold in
E™*+4. The generalized Beltrami submanifolds and toroidal submanifold are the special
examples of these kind of submanifolds. In this paper, we consider 3-dimensional rota-
tional embedded submanifolds in Euclidean 5-space E°. We give some basic curvature
properties of this type of submanifolds. Further, we obtain some results related with the
scalar curvature and mean curvature of these submanifolds. As an application, we give
an example of rotational submanifold in E2.
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1. Introduction

The Gaussian curvature and mean curvature of the surfaces in Fuclidean spaces
play an important role in differential geometry. Especially, surfaces with constant
Gaussian curvature [22], and constant mean curvature form nice classes of sur-
faces which are important for surface modeling [9]. Surfaces with constant negative
curvature are known as pseudo-spherical surfaces (see, [16]). Rotational surfaces
in Fuclidean spaces are also an important subject of differential geometry. The
rotational surfaces in E3 are called surfaces of revolution. Recently, Velickovic clas-
sified all rotational surfaces in E® with constant Gaussian curvature [21]. Rotational
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surfaces in E* were first introduced by Moore in 1919. In the recent years, some
mathematicians have taken an interest in the rotational surfaces in E*, for example
Ganchev and Milousheva [15], Dursun and Turgay [14], Arslan et al. [3]. The rota-
tional surfaces with pointwise 1-type Gauss map in E* are studied in [4]. Arslan
et al. in [3] gave the necessary and sufficient conditions for generalized rotation
surfaces to become pseudo-umbilical. They also gave some special classes of gener-
alized rotational surfaces as examples. See also [5l [7, 8 [T}, 23] for the rotational
surfaces (with constant Gaussian curvature) in Euclidean 4 -space E*. For higher
dimensional case, Arslan et al. defined rotational embedded surfaces in Euclidean
spaces [6].

In [16], Gorkavyi and Nevmerzhitskaya introduced a special class of curves in E™
called generalized tractrices. Then, by applying special motions in E™ to generalized
tractrices, they construct a special class of pseudo-spherical surfaces in E™ called
generalized Beltrami surfaces.

In [18], Kuiper considered a unit speed regular curve v in E"™! and a vector
function p represents either a unit speed curve p = p(u) or a (n — 1)-dimensional
submanifold W"~! in S"~1 C E™. Then, the rotation of v around p give rise a sub-
manifold M™ in E"*+¢, which is called rotational submanifold. Generalized Beltrami
submanifolds and toroidal submanifolds [2, 20] are the special examples of these
kind of submanifolds. See also [12| [13| ('l [19] for rotational submanifolds in higher
dimensional case.

This paper is organized as follows: In Sec. 2] we give some basic concepts of the
second fundamental form and curvatures of the submanifolds in E**¢. In Sec. 3 we
consider 3-dimensional rotational submanifolds in E®. Further, we give some basic
curvature properties of two types of rotational submanifolds E®. Consequently, we
obtain some results related with the mean curvature and scalar curvature of 3-
dimensional rotational submanifolds in [E°.

2. Basic Concepts

Let M™ be an n-dimensional smooth submanifold in E"+¢ given with the isomet-
ric immersion (position vector), X (s,u1, ..., un—1) : (S,u1,...,up—1) € U C E".
The tangent space to M™ at an arbitrary point p = X(s,u1,...,up—1) of M"
span{ X, ..., Xy, _, . In the chart (s, u1,...,u,—1) the coefficients of the first fun-
damental form of M™ are given by

9ij = (Xu Xu,), wo=s, 0<i, j<n—1, (1)

where (,) is the Euclidean inner product [I]. Let x(M™) and x*(M™) be the space
of the smooth vector fields tangent and normal to M™, respectively. Given any
local orthonormal vector fields X;, Xo,..., X, tangent to M", consider the second
fundamental map h : x(M"™) x x(M") — x+(M™);

h(Xi,X,)=Vx X, -Vx X,, 1<i, j<n. (2)
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where V and % are the induced connection of M™ and the Riemannian connection
of E™, respectively. This map is well-defined, symmetric and bilinear [10].
For any arbitrary orthonormal normal frame field { Ny, Na, ..., Ng} of M™, recall
the shape operator A : - (M™) x x(M™) — x(M™);
AN, X; = —(Vx,N)T, 1<a<d, X;e€x(M™). (3)
This operator is bilinear, self-adjoint and satisfies the following equation:
(AN, Xj, Xi) = (B(Xi, Xj), No) = hi;, 1<id, j<n; 1<a<d, (4)

where h; are the coefficients of the second fundamental form. The Eq. (@) is called
Gaussian formula, and

h(Xi, X;) Zh W, 1<i,j<n. (5)

holds. Then the mean curvature vector H of M is given by

1 n
==Y h(Xi, Xp). (6)
n
k=1
The norm of the mean curvature vector H = HﬁH is called the mean curvature of
M™.

We denote R and R the curvature tensors associated with V and D, respec-
tively;

R(Xi, Xj) Xk = VX, Vx, X — VX, Vx, Xi = Vix, x;)X; 1<4, j,k<n,
R (Xi, X;)Ny = h(Xi, An, X;) — M(Xj, An, X;); 1< a<d.
The equation of Gauss and Ricci are given, respectively by
Rijr = (R(X:, X;) Xk, X))
= (h(Xy, X0), h(X;, X)) — (h( X3, Xi), h(X5, X0)), (7)
(R*(Xi, X;)Na, Ng) = ([An... AN, Xi X;), (8)

for the vector fields X;, X;, X}, and X; tangent to M" and N,, Ng normal to M".
We observe that the normal connection D of M™ is flat if and only if all the shape
operators Ay, of M™ are diagonalizable [10]. Consequently, the Ricci curvature R;;
and scalar curvature v of M™ are defined, respectively as follows:

Rij = Z Rikje,
k=1
S
i—1
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From the equation of Gauss, it is possible to find the scalar curvature r satisfy
the following relation:

r:n2|H|2—S, (9)

where

d n
S = Z:l .Zl(h%)2' (10)

is the square of the second fundamental form and H is the mean curvature of M"™

0.

3. Rotational Submanifolds in E®

Let
FWE B f@) = (fu@).. fol), @€ WO

be an isometric immersion of d-dimensional Riemannian manifold W into p-
dimensional Euclidean space EP. Consider the standard immersion g : S9! — ¢
onto unit sphere S9!, By rotating the submanifold W around S9! one can obtain
a rotational submanifold M given with the isometric immersion

XM —FE X(y) = (A(),- - fo1(@), fo(2)g(y), (11)

where the last component g(y), being the position vector in E? and f,(z) > 0 for
all z € W?, y € S971 (see [I8, p. 218]).

If we choose W% as the regular curve v(I), I C R, in p-dimensional Euclidean
space EP then the resultant rotational submanifold M which lies in ambient space
EP*T4—1 will be represented by the isometric immersion

X(s,9) = (f1(s), -+ s fp-1(8), fp(s)g(v))- (12)

where the last component g(y) represent either a unit speed spherical curve or a
spherical submanifold of E?.

In the sequel we consider 3-dimensional rotational submanifolds in 5-dimensional
Euclidean space E°. We have the following two possible cases;

Case I. For p = 2 and ¢ = 4, the isometric immersion
X(s,u,v) = (f1(s), f2(s)g(u, v)) (13)
with
g(u,v) = (0; a1 cosu, a sin u, as cos v, as sinv) (14)

describes a rotational submanifold M? in 5-dimensional Euclidean space E°. The
surface given with the position vector ([d) is a Clifford torus T2 in E*, such that
a1, as € R are real constants satisfying a? + a3 = 1.
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Differentiating ([I3)) with respect to s, u and v we obtain
X, = (f1,a1f5cosu,ar fysinu, as f5 cosv, as f4sinv),
X = (0,—aq fosinu, ay f2 cosu, 0,0), (15)

X, =(0,0,0, —azf2sinv, as fa cosv),

respectively.
We can find the coefficients of the first fundamental form as follows:
g =1, g=dlf;, gs3=a3f3,
(16)
912 = 913 = g23 = 0.
Consequently, if we take the arc-length of the curve v as the parameter s the first
fundamental form of M3 becomes

I =ds* + f3(addu® + a3dv?).
The normal space of M3 is spanned by the following vector fields:

1
N1 = =(f{, a1 fY cosu,ay f3 sinu, asfy cosv, as f3 sinv),
" (17)

Ny = (0, ag cos u, ag sinu, —aj cosv, —ay sinv),

where £ > 0 is the curvature of the profile curve v defined by

k(s) =" (s)ll = \/f{’(S))2 + (f5(s))%. (18)

The second partial derivatives of X are expressed as follows:

Xes = (f1, a1 fy cosu,ay f sinu, as fy cosv, as fi sinv),

Xuw = (0, —a1 fo cosu, —ar fasinu, 0,0),
Xuw = (0,0,0, —as fa cosv, —as fa sinv),
(19)
Xsu = (07 —alfé Sinu, alfz/ cosu, 07 O)’
X = (0,0,0, —as fysinv, as f5 cos v),

Xuv =(0,0,0,0,0).

Using (I7) and (I9) we can get the coefficients of the second fundamental form h
as follows:

Lh = (Xss, N1) = £K(s),
_aifa(s)f5(s)
K(s)
L3y = (Xuu, Na) = —araz fo(s),
a3 fa(s)f5(s)

K(s) ’

L%z = <qu»N1> =

Lil’>3 = <va7N1> =
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L§3 = <vaaN2> = a1a2f2(3),
L%l = L}Q = L%z = L%s = L%s = L%s = L%s =0.

(20)
Furthermore, the orthonormal frame field tangent to M3 is given by
X
X = XA = (f1,a1fhcosu,ar fssinu,asfycosv, as fysinv),
Xu Xy .
Xy = X =- 7 = (0, —sinu, cos u, 0, 0), (21)
u 1J2
Xy X, .
X3 = m = 7 = (0,0,0, —sinv, cosv).
v 2.J2
With respect to this frame we can obtain the second fundamental maps;
1
h(X1, X)) = e (Li,Ny + L? Ny) = KNy,
h(Xo, Xa) = — (LLNy + L2, N5) = — T2 N, = 92,
) ||Xu||2 22 22 f2 a1f2 ) (22)
h(Xa, X5) = ——— (LL Ny + L2,Ny) = —L2 N, + -4,
3,43 ||X 2 3341 334V2 ko fa 1 a2 25

h(X1, Xo) = h(X1, X3) = h(Xs, X3) = 0.

Consequently, by the use of 22)), (&) with (I0) the square length of the second
fundamental form h becomes

1 2( //)2 a +a4
S 2 11a2) 923
o (Tt .
Further, substituting (22]) into (@) the mean curvature vector H of M? becomes
= 1 214 a3 — a3 > }
H=_-<(r—- N; + Ny p. 24
3 {( fif2> <a1a2f2 ’ 29

Summing up the above relations we obtain the following result.

Theorem 1. Let M? be a rotational submanifold in E® given with the parametriza-
tion (3). Then the mean curvature H and the scalar curvature r of M? become

3 \/(_ iJ}ED ; (;f()) fa(s) 0, (25)

_ 2 (P e
— s (B sy - 1), (26)

respectively, where, k > 0 is the curvature of the profile curve v and a1,as € R are

and

real constants satisfying a% + a% =1.
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Since the profile curve v has unit speed parametrization

fils) = /1= (f3(s))%. (27)

holds. So, after some computation we have

2 = e = L 28)

Consequently, substituting (28] into (28) we obtain the following result.

Corollary 2. Let M3 be a rotational submanifold in E® given with the parametriza-
tion [@3)). Then the scalar curvature v of M3 becomes

- %{%)Q L ofafl). (20)

For the case of vanishing scalar curvature we have the following result.

Corollary 3. Let M3 be a rotational submanifold in E® given with the parametriza-
tion [@3)). Then M3 has vanishing scalar curvature if and only if

) ; a3y 3/2
f1(s)=ia(as+b) (1—(12 (5(6134'5)) ) ’ (30)

3

o) = (Glas+0)) (31)
holds.

Proof. Assume that M3 has vanishing scalar curvature then
(f2)* +2f2f3 =0

holds. This differential equation has a non-trivial solution

fals) = <g(as+b)>%.

So, differentiating fa(s) and using (1) we obtain ([B0). This completes the proof of
the corollary. O

For the minimal case we have;

Corollary 4. Let M3 be a rotational submanifold in E® given with the parametriza-
tion ([I3). Then M3 is minimal if and only if

f2f5/+2(fé)2,2:0 and ap = Fag = (32)

Sl -

holds.

Proof. Let M? be a rotational submanifold in E® given with the parametriza-
tion ([I3). If M? is a minimal submanifold then x? = 2%2 and a; = +ay = %

1950029-7
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holds. So, using (28]) we obtain the following differential equation:

Y fafl +2(f)2 —2) =0.

If f5/(s) = 0 holds then x = 0 which gives a contradiction. So the differential
equation fafy + 2(f5)? —2 =0 holds. This gives the proof of the result. O

Case II. For p = 3 and ¢ = 3, the isometric immersion ([[2) describes a rotational
submanifold M3 in E5 given with the parametrization

X(s,u,v) = (f1(s), f2(s), f3(s)g(u,v)), (33)
where
g(u,v) = (0,0; cosu, sinucosv,sinusinv), (34)

is the position vector of the unit sphere S? C E3.
Differentiating ([33)) with respect to s, u and v we obtain

Xs = (f1, f3, fs cosu, fisinucosv, f4sinusinv),
X = (0,0, —f3sinu, f3cosucosv, f3cosusinv),
X, =(0,0,0, —f3sinusinv, f3sinucosv),

respectively. We can find the coefficients of the first fundamental form as follows:
gu=1, go=fi(s), ga=fi(s)sin’u,
(35)
g12 = g13 = g23 = 0.
Consequently, if we take the arc-length of the curve v as the parameter s the
first fundamental form of M3 becomes

I = ds* + f2(du® + sin? udv?).
The second partial derivatives of X are expressed as follows:

Xes = (f1, 13, 14 cosu, fi sinucosv, f§ sinusinv),

X = (0,0, — f4sinu, f5cosucosv, ficosusinv),

X = (0,0,0, — fisinusino, f§ sinu cosv),

Xuw = (0,0,0, — f3 cosusinv, f3 cosucosv), (36)
Xuu = (0,0, — f3cosu, — fysinu cosv, — f3 sinusinv),

Xup = (0,0,0,— fysinu cosv, — f3sin usinv).
The normal space of M3 is spanned by the following vector fields:

Ny =

(f, 15, f4 cosu, f§ sinucoswv, f sinusinv),

Il= I

Ny = —(A, B, k1 cosu, k1 Sinu cos v, K1 sinusinv),

1950029-8
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in such a way that
A= fofs = 15 f3
B= il fifi
are smooth functions,
= fifs = f'fs (38)
is the curvature of the projection of the curve v on the Oe;es-plane and
b= U2+ (F)2 + (f4)? (39)
is the curvature of the profile curve ~.

Using (B8] and [B1) we can get the coefficients of the second fundamental form
as follows:

Lh = <X557N1> =
L f3

L%QZ (Xuu, N1) = K # 0,
K
L35 = (Xuu, No) = —f?’ﬂ -,
(40)
Liy = Xy, Np) = f?’ sin? u,
L§3 - <X71v7N2> = 7f3/€1 Sin2 u,
K
Lu = L12 = L12 = L13 = L13 = Lés = ng = 0.
Here, k # 0, means that the profile curve 7(s) is different from a straight line.
Furthermore, the orthonormal frame field tangent to M? is given by
X
X = AT (f1, f5, f5cosu, fssinucosv, fisinusinv),
Xy . :
X, = Xl = (0,0, —sinw, cos u cos v, cos u sin v), (41)
X,
X3 = %o = (0,0,0, —sinv, cosv).
With respect to this frame we can obtain the second fundamental maps;
1
h(X1,X1) = X (Li; Ny + L3 Ny) = KNy,
h(X2, Xo) ! (L3a N1 + L3y Ny) = I3 EESS VAT
’ 12|22 - kfs kfs (42)
1 Sy
h(X3, X LisNy + L3N. 55 Ny - ZL
( 35 3) ||X “2( 33{V1 + L33 2) K fs % fa 2,

WXy, X2) = h(X1, X3) = h(X2, X3) = 0.
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Consequently, by the use of [@2), () with ([I0) the square length of the second
fundamental form h becomes

2 2, .2
S=r"+ H2f32<< 5)° + KT). (43)
Further, substituting ([#2]) into (@) the mean curvature vector H of M? becomes
= 1 2f§l 2I<31
H=— — Ny — —Ny ;. 44
{2 ) - e e

Summing up the above relations we obtain the following result.

Theorem 5. Let M? be a rotational submanifold in E® given with the parametriza-
tion [B3). Then the mean curvature H and the scalar curvature r of M? become

2f7\°  4r?
3H = -3 — 45
\/<“ ) 1)
and,
o 2 U 11\2 2
r— 4k f3f3 +2( 3) +2/€1’ (46)
K2 f3

respectively. Here k1 and k are curvature functions given by B8) and B9), respec-
tively.

We give the following example.

Example 6. Consider the rotational submanifold M? given with the parametriza-

tion
fi(s) ==+ / V1—ae 2ds + ¢,
fals) = e, 47)
fs(s) = pe™,
where
a= A2 =+ M2

is the constant function. Further, substituting (@) into (46) and using (B8)) and (39)
we obtain

2

For the case of vanishing scalar curvature we have the following result.

Corollary 7. Let M3 be a rotational submanifold in E® given with the parametriza-
tion @3). Then M3 has vanishing scalar curvature if and only if
11\2 2
K2 — (/) ‘*’N"ﬁ (49)
2f 3f 3
holds.
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For the minimal case we have;

Corollary 8. Let M3 be a rotational submanifold in E® given with the parametriza-
tion B3). Then M?3 is minimal if and only if

fafd +2(f3)? =2 =0, (50)
holds.

Proof. Let M? be a rotational submanifold in E® given with the parametriza-

tion ([B3). If M3 is minimal then x? = % and k1 = 0 holds. So, using the Eq. (38])

we get
fils) = Afs(s). (51)

Since the profile furve « is given with arc-length parameter s, then using (BIl) we
obtain

=5
Ve

Consequently, differentiating (52)) with respect to s and using ([B9) with x* = 7
we get the following differential equation:

V(s f) +2(f5)%—2) =0.

If f4{(s) = 0 holds then x = 0 which gives a contradiction. So the differential
equation f3f{ + 2(f4)? — 2 = 0 holds. This gives the proof of the result. O

fa(s) = (52)
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